
CS 410/510

Large Scale Systems

Assignment 3:

Implementing MiniSpanner

Overview:

In this course, our goal is to create MiniSpanner. MiniSpanner takes inspiration from

Google’s Spanner database. Despite being created nearly two decades ago, Spanner still

acts as the backbone for all Google’s applications.

In this course, over a span of four assignments, you will be creating MiniSpanner. Thus,

all the assignments are incremental as you will get an opportunity to use your existing

code in your current assignment.

Goal:

The goal of your third assignment is to implement a sharded replicated architecture on

top of Apache ResilientDB (incubating).

CS 410 students will add to their sharded replicated architecture their previously

implemented Two Phase Commit (2PC) protocol.

CS 510 students will add to their sharded replicated architecture their previously

implemented Three Phase Commit (3PC) protocol.

Key Challenges:

• ResilientDB, by default, assumes a replicated system. However, the goal is to

create a sharded-replicated architecture.

• In a sharded-replicated architecture, the system consists on multiple shards and

each shard manages a distinct set of data-items. Within each shard, the data is fully

replicated. Among the replicas, one of the replicas acts as the leader. The leaders

of all the shards participate in 2PC/3PC protocol to decide on the fate (commit or

abort) of a distributed transaction.

• Like in any partitioned/sharded system, the leader of each shard (in this

assignment) can receive the client transaction. The leader that receives client

transaction acts as the global-coordinator, initiates concurrency control and

commit protocol.

• ResilientDB, by default, runs PBFT protocol and does not have any notion of a

concurrency control and commit protocol. ResilientDB’s PBFT implementation

assumes that the proxy collects all the client requests and forwards them to the

leader to initiate PBFT consensus. Post PBFT consensus, each replica of

ResilientDB executes the transaction and replies to the client.

Key Expectations:

• You are expected to modify the architecture of ResilientDB to implement the

sharded-replicated architecture.

• Such a change may require adding some additional threads and functions to

ResilientDB.

• In practice, the number of shards and number of replicas per shard are dependent

on the application. However, you can assume that these numbers are fixed; the

number of shards = 4 and the number of replicas per shard = 4.

• You are expected to modify the proxy to allow it to send client requests to the

leader of different shards. Notice that in the current ResilientDB architecture, the

proxy sends requests to only one replica (that is the leader). In this assignment,

you must ensure that the proxy alternates sending the requests.

For example: first batch of request is sent to the leader of first shard, second batch

to the leader of second shard, third batch to the leader of third shard, fourth batch

to the leader of fourth shard, fifth batch to the leader of first shard, and so on.

• Like Assignment 2, you can assume that the leader (shard) that receives the

transaction acts the coordinator (coordinating shard) and all the other shards are

participating shards. Thus, every shard participates in each transaction; each

transaction requires access to 4 partitions/shards.

• Once the coordinator receives a transaction, it should initiate 2PC/3PC protocol.

During this 2PC/3PC protocol, you should forward the transaction to the leaders

of other shards.

• You are not expected to run or implement any concurrency control protocol.

• Once the commit protocol is finish, the leader of each shard should forward this

transaction to its replicas. Ideally, forwarding the transaction to each replica

implies the leader initiating the PBFT consensus protocol among its replicas. Post

PBFT consensus, only the replicas of the coordinator shard forward the response

to the client.

In your assignment, if you find it hard to implement the above step, then you have

two options:

1. You can avoid leader forwarding request to all the replicas. If you do so, then

you should make all the leaders execute the request (post commit protocol) and

reply to the client. Notice that you need minimal to no changes in execute and

response functions but need to call them explicitly.

2. You can forward the request to the replicas and ensure that only replicas of the

coordinating shard execute the request and reply to the client.

Assignment Tasks:

Following are the tasks that you need to perform as part of this assignment.

1. Implement your architecture.

2. Measure the throughput of your commit protocol at the coordinating shard.

Deliverables:

As part of this assignment, you are expected to provide the following deliverables.

1. A latex report explaining how you implemented sharded-replicated architcture.

Please provide details of what functions you modified or added to the existing

codebase.

2. In your latex report include snapshots of any function that you modified. These

snapshots should show your changes.

3. Please state your machine configuration and the observed throughput/latency.

