Large Scale Systems

CS 410/510

Lecture 18:
Streamlined Consensus

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io



Assignment 4 is Out!

* Assignment 4 is due on June 2, 2025 at 11:59pm PST.

* Please start working with your groups.



Presentations

* Each group will present their MiniSpanner on June 4, 2025 in class.
* The class will start 10min earlier on 8:20am to accommodate all the groups.

* Each group will get 25-30min to present their progress.



Reading Material

* Online reading



Last Class

e Last class we looked at:

* Scaling Consensus across Globe

* GeoBFT
* RingBFT



Optimizing PBFT
 Today, our goal is to continue optimizing PBFT.

* Until now, we added to PBFT:
* Pipelining
* Out-of-Order Message Processing
* Speculation
* Parallelism
* Geo-scaling
 Sharding



PBFT Protocol

Client %
Leader @ !

St
0
il

Replica ® \
\ <

Replica @ \

Replica @

Client Pre- Prepare Commit Reply
Request Prepare



What can we do next?



What can we do next?

* We can linearize the phases of PBFT.

* Split each phase with quadratic communication complexity into 2 phases of linear
complexity.

e Instead of All-to-All 2 All-to-One + One-to-All.



PBFT Linearized

Client @

Leader @

Replica ®

Replica @

Replica @
Client

Request

10



PBFT Linearized

Client \
Leader @

Replica ®

Replica @

Replica @
Client

Request

11



PBFT Linearized

Client

Leader @

Replica @

\

Replica @
Client Pre-

Request Prepare



PBFT Linearized

Client
Leader @
Replica ®
Replica @ \\‘/
Replica @ \

Client Pre- Prepare
Request Prepare



PBFT Linearized

Client

Leader @

Replica @ \ \
Replica @
Client Pre- Prepare
Request Prepare



PBFT Linearized

Client

Leader @

Replica ® \ \
Replica @ :
Client Pre- Prepare Commit

Request Prepare



Client

PBFT Linearized

Leader @

Replica ®

N4

N

Replica @

\

\

Replica @

Client

Pre-

Request Prepare

Prepare

Commit




Client

PBFT Linearized

i

Leader @

/

Replica ®

N4

N

Replica @

\

\

\\/

Replica @

Client

Pre-

Request Prepare

Prepare

Commit Reply



Challenges for Linearized PBFT?

* Even though we linearized PBFT, did we actually save any communication?



Challenges for Linearized PBFT?

* Even though we linearized PBFT, did we actually save any communication?

* The leader needs to still send each replica a certificate!
* A certificate comprises of n-f Prepare or Commit messages.

* The communication is still quadratic 2 n messages and each of size O(n).



Challenges for Linearized PBFT?

* Even though we linearized PBFT, did we actually save any communication?

* The leader needs to still send each replica a certificate!
* A certificate comprises of n-f Prepare or Commit messages.

* The communication is still quadratic 2 n messages and each of size O(n).

* Can we do something better?



Threshold Signature-Scheme



Threshold Signature-Scheme

* Each replica creates a threshold-share
* Signs the digest of the message using a special key.



Threshold Signature-Scheme

* Each replica creates a threshold-share
* Signs the digest of the message using a special key.

* Next, each replica sends this share along with its message to the leader.



Threshold Signature-Scheme
* Each replica creates a threshold-share
* Signs the digest of the message using a special key.

* Next, each replica sends this share along with its message to the leader.

* The leader combines n-f shares to create a threshold signature.
* The size of the signature is O(1).
* Anyone can verify to check if the share was created with the help of n-f replicas.



Threshold Signature-Scheme
* Each replica creates a threshold-share
* Signs the digest of the message using a special key.

* Next, each replica sends this share along with its message to the leader.

* The leader combines n-f shares to create a threshold signature.
* The size of the signature is O(1).
* Anyone can verify to check if the share was created with the help of n-f replicas.

* This whole idea is enabled using threshold cryptographic schemes that allow
creating keys that support aggregation.



Linearized PBFT with Threshold Cryptography

* With threshold cryptography, linearization of PBFT is complete.
* Now, we have reduced communication cost from quadratic to linear.

* However, the design is now more computationally expensive as threshold
cryptography is expensive.

* This idea was introduced in a protocol < HotStuff [PODC'19].

* The n-f threshold signature is often referred to as QC = Quorum Certificate.



Challenges for Linearized PBFT?

* Any other remaining challenges?



Challenges for Linearized PBFT?

* Any other remaining challenges?
* Yes!

» HotStutf also discussed about the challenges of having one leader:
* Censorship of Clients.
* Leader Slowness.
* Expensive view change.



Client Censorship

* A single fixed leader can censor clients = silently drop their requests.

* May avoid proposing requests of specific clients unless forced.



Leader Slowness

* A clever Byzantine leader may propose client requests slowly.

* If the leader knows that it will not be replaced if it proposes a minimum number of
requests within a specific time period, then it will not propose any extra requests.



View Change Costs

* We know that view change is expensive.

* During view change, no consensus can take place.



HotStuff’s Solution



HotStuff’s Solution

* Switch leader after every consensus!

 Each leader lasts for only one round of consensus.



HotStuff-2 (a faster variant of HotStuff)

Client %
Leader e , ,

/

Replica @

Replica @ \ \

Client Pre- Prepare Commit Reply
Request Prepare



HotStuff-2 (a faster variant of HotStuff)

" 7
SN NP NN

Replica @

\ \ \

Client Pre- Prepare Commit Reply &
Request Prepare New View



Challenges with HotStuff-2



Challenges with HotStuff-2

* Changing leader at the end of each consensus enforces that each leader can propose
only one batch.

* Propose one batch < Switch.
* No possibility for applying out-of-order message processing!

* Extreme drop in throughput.



How can we increase HotStuff-2’s throughput?



Streamlined HotStuff-2

* Allow switching leader in every alternate phase.
* Essentially pipelining

* Twice the throughput.

* No change in the number of phases necessary to commit a transaction.



Streamlined HotStuff-2

Client @

Leader @

Replica ®

Replica @

Replica @
Client

Request

40



Streamlined HotStuff-2

Client
N
Leader @

Replica ®

Replica @

Replica @
Client

Request

41



Client

Streamlined HotStuff-2

\\\

T1
Leader @
Replica ®
Replica @
Replica @
Client

Pre-

Request Prepare



Streamlined HotStuff-2

Client
T1 T2
Leader @
Replica ® \
Replica @ \
Replica @
Client Pre- Prepare T1

Request Prepare



Streamlined HotStuff-2

Client

T1 T2
Leader @
Replica ® \
Replica ® \ \
Replica @
Client Pre- Prepare T1

Request Prepare



Streamlined HotStuff-2

Client
Tl T2 \ T3

Leader @ \

Replica ® \

Replica ® \ \

Replica @
Client Pre- Prepare T1 Commit T1

Request Prepare Prepare 12



Streamlined HotStuff-2

Client
Tl T2 \ T3

Leader @ \

Replica ® \

Replica ® \ \

Replica @
Client Pre- Prepare T1 Commit T1

Request Prepare Prepare 12



Streamlined HotStuff-2

Client
- BN L

Leader @ \

Replica ® \ \

Replica @ \ \

Client Pre- Prepare T1 Commit T1 Reply T1
Request Prepare Prepare T2

Replica @



Streamlined HotStuff-2

* The first QC is formed and stored by each replica at the end of Prepare phase.
* The second QC -2 at the end of Commit phase.

* Storing QC is same as locking the QC.

* Essentially a guarantee by the replica that it will not support any QC formed at a
lower view.



Can we do better?



HotStuff-1

* HotStuff-1 [SIGMOD2025] - Speculation + HotStuff-2.
* More challenging than PPoE as regular view changes!

* HotStutf-1 + Slotting:
* Increases throughput by giving leaders multiple proposal slots.



	Slide 1: Large Scale Systems CS 410 / 510
	Slide 2: Assignment 4 is Out!
	Slide 3: Presentations
	Slide 4: Reading Material
	Slide 5: Last Class
	Slide 6: Optimizing PBFT
	Slide 7: PBFT Protocol
	Slide 8: What can we do next?
	Slide 9: What can we do next?
	Slide 10: PBFT Linearized
	Slide 11: PBFT Linearized
	Slide 12: PBFT Linearized
	Slide 13: PBFT Linearized
	Slide 14: PBFT Linearized
	Slide 15: PBFT Linearized
	Slide 16: PBFT Linearized
	Slide 17: PBFT Linearized
	Slide 18: Challenges for Linearized PBFT?
	Slide 19: Challenges for Linearized PBFT?
	Slide 20: Challenges for Linearized PBFT?
	Slide 21: Threshold Signature-Scheme
	Slide 22: Threshold Signature-Scheme
	Slide 23: Threshold Signature-Scheme
	Slide 24: Threshold Signature-Scheme
	Slide 25: Threshold Signature-Scheme
	Slide 26: Linearized PBFT with Threshold Cryptography
	Slide 27: Challenges for Linearized PBFT?
	Slide 28: Challenges for Linearized PBFT?
	Slide 29: Client Censorship
	Slide 30: Leader Slowness
	Slide 31: View Change Costs
	Slide 32: HotStuff’s Solution
	Slide 33: HotStuff’s Solution
	Slide 34: HotStuff-2 (a faster variant of HotStuff)
	Slide 35: HotStuff-2 (a faster variant of HotStuff)
	Slide 36: Challenges with HotStuff-2
	Slide 37: Challenges with HotStuff-2
	Slide 38: How can we increase HotStuff-2’s throughput?
	Slide 39: Streamlined HotStuff-2
	Slide 40: Streamlined HotStuff-2
	Slide 41: Streamlined HotStuff-2
	Slide 42: Streamlined HotStuff-2
	Slide 43: Streamlined HotStuff-2
	Slide 44: Streamlined HotStuff-2
	Slide 45: Streamlined HotStuff-2
	Slide 46: Streamlined HotStuff-2
	Slide 47: Streamlined HotStuff-2
	Slide 48: Streamlined HotStuff-2
	Slide 49: Can we do better?
	Slide 50: HotStuff-1

