
Suyash Gupta

Assistant Professor

Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 18:

Streamlined Consensus

Large Scale Systems
CS 410 / 510

Assignment 4 is Out!

2

• Assignment 4 is due on June 2, 2025 at 11:59pm PST.

• Please start working with your groups.

Presentations

3

• Each group will present their MiniSpanner on June 4, 2025 in class.

• The class will start 10min earlier on 8:20am to accommodate all the groups.

• Each group will get 25-30min to present their progress.

Reading Material

• Online reading

4

Last Class

• Last class we looked at:

• Scaling Consensus across Globe

• GeoBFT

• RingBFT

5

Optimizing PBFT

6

• Today, our goal is to continue optimizing PBFT.

• Until now, we added to PBFT:

• Pipelining

• Out-of-Order Message Processing

• Speculation

• Parallelism

• Geo-scaling

• Sharding

PBFT Protocol

7

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare Commit Reply

What can we do next?

8

What can we do next?

• We can linearize the phases of PBFT.

• Split each phase with quadratic communication complexity into 2 phases of linear
complexity.

• Instead of All-to-All → All-to-One + One-to-All.

9

PBFT Linearized

10

Client

Leader

Replica

Replica

Replica
Client

Request

PBFT Linearized

11

Client

Leader

Replica

Replica

Replica
Client

Request

PBFT Linearized

12

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare

PBFT Linearized

13

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare

PBFT Linearized

14

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare

PBFT Linearized

15

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare Commit

PBFT Linearized

16

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare Commit

PBFT Linearized

17

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare Commit Reply

Challenges for Linearized PBFT?

18

• Even though we linearized PBFT, did we actually save any communication?

Challenges for Linearized PBFT?

19

• Even though we linearized PBFT, did we actually save any communication?

• The leader needs to still send each replica a certificate!

• A certificate comprises of n-f Prepare or Commit messages.

• The communication is still quadratic → n messages and each of size O(n).

Challenges for Linearized PBFT?

20

• Even though we linearized PBFT, did we actually save any communication?

• The leader needs to still send each replica a certificate!

• A certificate comprises of n-f Prepare or Commit messages.

• The communication is still quadratic → n messages and each of size O(n).

• Can we do something better?

Threshold Signature-Scheme

21

Threshold Signature-Scheme

22

• Each replica creates a threshold-share

• Signs the digest of the message using a special key.

Threshold Signature-Scheme

23

• Each replica creates a threshold-share

• Signs the digest of the message using a special key.

• Next, each replica sends this share along with its message to the leader.

Threshold Signature-Scheme

24

• Each replica creates a threshold-share

• Signs the digest of the message using a special key.

• Next, each replica sends this share along with its message to the leader.

• The leader combines n-f shares to create a threshold signature.

• The size of the signature is O(1).

• Anyone can verify to check if the share was created with the help of n-f replicas.

Threshold Signature-Scheme

25

• Each replica creates a threshold-share

• Signs the digest of the message using a special key.

• Next, each replica sends this share along with its message to the leader.

• The leader combines n-f shares to create a threshold signature.

• The size of the signature is O(1).

• Anyone can verify to check if the share was created with the help of n-f replicas.

• This whole idea is enabled using threshold cryptographic schemes that allow
creating keys that support aggregation.

Linearized PBFT with Threshold Cryptography

26

• With threshold cryptography, linearization of PBFT is complete.

• Now, we have reduced communication cost from quadratic to linear.

• However, the design is now more computationally expensive as threshold
cryptography is expensive.

• This idea was introduced in a protocol → HotStuff [PODC’19].

• The n-f threshold signature is often referred to as QC → Quorum Certificate.

Challenges for Linearized PBFT?

27

• Any other remaining challenges?

Challenges for Linearized PBFT?

28

• Any other remaining challenges?

• Yes!

• HotStuff also discussed about the challenges of having one leader:

• Censorship of Clients.

• Leader Slowness.

• Expensive view change.

Client Censorship

29

• A single fixed leader can censor clients → silently drop their requests.

• May avoid proposing requests of specific clients unless forced.

Leader Slowness

30

• A clever Byzantine leader may propose client requests slowly.

• If the leader knows that it will not be replaced if it proposes a minimum number of
requests within a specific time period, then it will not propose any extra requests.

View Change Costs

31

• We know that view change is expensive.

• During view change, no consensus can take place.

HotStuff’s Solution

32

HotStuff’s Solution

33

• Switch leader after every consensus!

• Each leader lasts for only one round of consensus.

HotStuff-2 (a faster variant of HotStuff)

34

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare Commit Reply

HotStuff-2 (a faster variant of HotStuff)

35

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare Commit Reply &

New View

Challenges with HotStuff-2

36

Challenges with HotStuff-2

37

• Changing leader at the end of each consensus enforces that each leader can propose
only one batch.

• Propose one batch → Switch.

• No possibility for applying out-of-order message processing!

• Extreme drop in throughput.

How can we increase HotStuff-2’s throughput?

38

Streamlined HotStuff-2

39

• Allow switching leader in every alternate phase.

• Essentially pipelining

• Twice the throughput.

• No change in the number of phases necessary to commit a transaction.

Streamlined HotStuff-2

40

Client

Leader

Replica

Replica

Replica
Client

Request

Streamlined HotStuff-2

41

Client

Leader

Replica

Replica

Replica
Client

Request

T1

Streamlined HotStuff-2

42

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare

T1

Streamlined HotStuff-2

43

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare

T1 T2

Prepare T1

Streamlined HotStuff-2

44

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare

T1 T2

Prepare T1

Streamlined HotStuff-2

45

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare

T1 T2 T3

Prepare T1 Commit T1
Prepare T2

Streamlined HotStuff-2

46

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare

T1 T2 T3

Prepare T1 Commit T1
Prepare T2

Streamlined HotStuff-2

47

Client

Leader

Replica

Replica

Replica
Client

Request
Pre-

Prepare
Prepare T1 Commit T1

Prepare T2
Reply T1

T1 T2 T3

Streamlined HotStuff-2

48

• The first QC is formed and stored by each replica at the end of Prepare phase.

• The second QC → at the end of Commit phase.

• Storing QC is same as locking the QC.

• Essentially a guarantee by the replica that it will not support any QC formed at a
lower view.

Can we do better?

49

HotStuff-1

50

• HotStuff-1 [SIGMOD’2025] → Speculation + HotStuff-2.

• More challenging than PoE as regular view changes!

• HotStuff-1 + Slotting:

• Increases throughput by giving leaders multiple proposal slots.

	Slide 1: Large Scale Systems CS 410 / 510
	Slide 2: Assignment 4 is Out!
	Slide 3: Presentations
	Slide 4: Reading Material
	Slide 5: Last Class
	Slide 6: Optimizing PBFT
	Slide 7: PBFT Protocol
	Slide 8: What can we do next?
	Slide 9: What can we do next?
	Slide 10: PBFT Linearized
	Slide 11: PBFT Linearized
	Slide 12: PBFT Linearized
	Slide 13: PBFT Linearized
	Slide 14: PBFT Linearized
	Slide 15: PBFT Linearized
	Slide 16: PBFT Linearized
	Slide 17: PBFT Linearized
	Slide 18: Challenges for Linearized PBFT?
	Slide 19: Challenges for Linearized PBFT?
	Slide 20: Challenges for Linearized PBFT?
	Slide 21: Threshold Signature-Scheme
	Slide 22: Threshold Signature-Scheme
	Slide 23: Threshold Signature-Scheme
	Slide 24: Threshold Signature-Scheme
	Slide 25: Threshold Signature-Scheme
	Slide 26: Linearized PBFT with Threshold Cryptography
	Slide 27: Challenges for Linearized PBFT?
	Slide 28: Challenges for Linearized PBFT?
	Slide 29: Client Censorship
	Slide 30: Leader Slowness
	Slide 31: View Change Costs
	Slide 32: HotStuff’s Solution
	Slide 33: HotStuff’s Solution
	Slide 34: HotStuff-2 (a faster variant of HotStuff)
	Slide 35: HotStuff-2 (a faster variant of HotStuff)
	Slide 36: Challenges with HotStuff-2
	Slide 37: Challenges with HotStuff-2
	Slide 38: How can we increase HotStuff-2’s throughput?
	Slide 39: Streamlined HotStuff-2
	Slide 40: Streamlined HotStuff-2
	Slide 41: Streamlined HotStuff-2
	Slide 42: Streamlined HotStuff-2
	Slide 43: Streamlined HotStuff-2
	Slide 44: Streamlined HotStuff-2
	Slide 45: Streamlined HotStuff-2
	Slide 46: Streamlined HotStuff-2
	Slide 47: Streamlined HotStuff-2
	Slide 48: Streamlined HotStuff-2
	Slide 49: Can we do better?
	Slide 50: HotStuff-1

