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Assignment 4 is Out!
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• Assignment 4 is due on June 2, 2025 at 11:59pm PST.

• Please start working with your groups.



Presentations
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• Each group will present their MiniSpanner on June 4, 2025 in class.

• The class will start 10min earlier on 8:20am to accommodate all the groups.

• Each group will get 25-30min to present their progress.



Reading Material

• Online reading
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Last Class

• Last class we looked at:

• Scaling Consensus across Globe

• GeoBFT

• RingBFT

5



Optimizing PBFT

6

• Today, our goal is to continue optimizing PBFT.

• Until now, we added to PBFT:

• Pipelining

• Out-of-Order Message Processing

• Speculation

• Parallelism

• Geo-scaling

• Sharding



PBFT Protocol
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What can we do next?
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What can we do next?

• We can linearize the phases of PBFT.

• Split each phase with quadratic communication complexity into 2 phases of linear 
complexity.

• Instead of All-to-All → All-to-One + One-to-All.
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PBFT Linearized
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PBFT Linearized
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PBFT Linearized
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Challenges for Linearized PBFT?
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• Even though we linearized PBFT, did we actually save any communication?



Challenges for Linearized PBFT?
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• Even though we linearized PBFT, did we actually save any communication?

• The leader needs to still send each replica a certificate!

• A certificate comprises of n-f Prepare or Commit messages.

• The communication is still quadratic → n messages and each of size O(n).



Challenges for Linearized PBFT?
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• Even though we linearized PBFT, did we actually save any communication?

• The leader needs to still send each replica a certificate!

• A certificate comprises of n-f Prepare or Commit messages.

• The communication is still quadratic → n messages and each of size O(n).

• Can we do something better?



Threshold Signature-Scheme
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Threshold Signature-Scheme
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• Each replica creates a threshold-share 

• Signs the digest of the message using a special key.
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• Each replica creates a threshold-share 

• Signs the digest of the message using a special key.
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Threshold Signature-Scheme
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• Each replica creates a threshold-share 

• Signs the digest of the message using a special key.

• Next, each replica sends this share along with its message to the leader.

• The leader combines n-f shares to create a threshold signature.

• The size of the signature is O(1).

• Anyone can verify to check if the share was created with the help of n-f replicas.



Threshold Signature-Scheme

25

• Each replica creates a threshold-share 

• Signs the digest of the message using a special key.

• Next, each replica sends this share along with its message to the leader.

• The leader combines n-f shares to create a threshold signature.

• The size of the signature is O(1).

• Anyone can verify to check if the share was created with the help of n-f replicas.

• This whole idea is enabled using threshold cryptographic schemes that allow 
creating keys that support aggregation.



Linearized PBFT with Threshold Cryptography

26

• With threshold cryptography, linearization of PBFT is complete.

• Now, we have reduced communication cost from quadratic to linear.

• However, the design is now more computationally expensive as threshold 
cryptography is expensive.

• This idea was introduced in a protocol → HotStuff [PODC’19].

• The n-f threshold signature is often referred to as QC → Quorum Certificate.



Challenges for Linearized PBFT?
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• Any other remaining challenges?



Challenges for Linearized PBFT?
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• Any other remaining challenges?

• Yes!

• HotStuff also discussed about the challenges of having one leader:

• Censorship of Clients.

• Leader Slowness.

• Expensive view change.



Client Censorship
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• A single fixed leader can censor clients → silently drop their requests.

• May avoid proposing requests of specific clients unless forced.



Leader Slowness
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• A clever Byzantine leader may propose client requests slowly.

• If the leader knows that it will not be replaced if it proposes a minimum number of 
requests within a specific time period, then it will not propose any extra requests.



View Change Costs
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• We know that view change is expensive.

• During view change, no consensus can take place.



HotStuff’s Solution
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HotStuff’s Solution

33

• Switch leader after every consensus!

• Each leader lasts for only one round of consensus.



HotStuff-2 (a faster variant of HotStuff)
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HotStuff-2 (a faster variant of HotStuff)
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Challenges with HotStuff-2
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Challenges with HotStuff-2
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• Changing leader at the end of each consensus enforces that each leader can propose 
only one batch.

• Propose one batch → Switch.

• No possibility for applying out-of-order message processing!

• Extreme drop in throughput.



How can we increase HotStuff-2’s throughput?
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Streamlined HotStuff-2
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• Allow switching leader in every alternate phase.

• Essentially pipelining

• Twice the throughput.

• No change in the number of phases necessary to commit a transaction.



Streamlined HotStuff-2
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Streamlined HotStuff-2
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Streamlined HotStuff-2
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Streamlined HotStuff-2
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• The first QC is formed and stored by each replica at the end of Prepare phase.

• The second QC → at the end of Commit phase.

• Storing QC is same as locking the QC.

• Essentially a guarantee by the replica that it will not support any QC formed at a 
lower view.



Can we do better?
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HotStuff-1
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• HotStuff-1 [SIGMOD’2025] → Speculation + HotStuff-2.

• More challenging than PoE as regular view changes!

• HotStuff-1 + Slotting:

• Increases throughput by giving leaders multiple proposal slots.
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