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Query Processing

* Last Lecture we looked at Query Processing
* How to measure the cost of a select operation?

* The cost of select operation helps us to decide what type of indexes to use, what
operators and attributes to access.

* Next, we look at Sorting.
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Why is Sorting Interesting to Us?

* SQL queries can require the output be sorted.

» Efficient query processing:
* Operations like Joins and searching can be implemented.



Ways to Sort a set of Keys

* Is it possible to sort a set of keys/records without running a sorting algorithm?
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Ways to Sort a set of Keys

* Is it possible to sort a set of keys/records without running a sorting algorithm?

* Yes, what if we have access to a B*-tree.
o All the leaves in a B*-tree are sorted!

* Can we do something more?
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Top-N Heap Sort

* Say a query contains an ORDER BY clause with a LIMIT.

* The DBMS only needs to scan the data once to find the required number of
elements.

* Specifically, a query asks you to output only first N elements.
 This is also an ideal candidate for Heap Sort!

* We are just going to scan data once and maintain an in-memory sorted priority
queue.
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asc fetch first 4 rows with ties
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Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data
23 34@67 S 6 76 98 78

Sorted Data

12 23 34
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Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 128 6 76 98 78

Sorted Data

12 23 34 67

19

83

19
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Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 6 76 98 78 19 83

Sorted Data

6 8§ 12 19 19 Tracks all the duplicates!
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Ways to Sort a set of Key

* But, is having just a B*-tree sufficient to satisfy all the sorting queries?
* What are we still missing?

* B*-tree is just an index.

* Your data needs to be physically sorted too!

* Remember, the benefits of sequential data access only comes when data is stored in
a sorted manner.



Ways to Sort a set of Key

* Imagine you have stored the data in your disk in unsorted manner but you are now
trying to fetch it in sorted manner?

* Pretty bad performance as too many disk accesses!
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Ways to Sort a set of Key

* So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

* Why this difference?

* Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

* In-memory swapping algorithms? = Quick Sort

* Our focus = Disk sorting algorithms.



External Merge-Sort

* Sorting of relations that do not fit in memory is called external sorting.
* A divide and conquer algorithm!

* Split data into parts (also called as runs).

* Sort each run individually.

* Merge the runs!
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External Merge-Sort

* What are the challenges for External Merge-Sort?
* Number of runs.

» Size of each run.

* Size of memory.

* All these factors work in conjunction to determine how fast can we perform external
merge-sort.



N-Way External Merge-Sort

* We are going to run an external merge sort where:
N total number of runs

« We will assume each run consists of M blocks.
* We will assume the memory can store N+1 blocks.
 We will fetch one block from each run at a time.

* Remember = Often you would decide on the right number of runs based on
how many threads you have, and how many blocks you can store.



2-Way External Merge-Sort > N=2

23 34 12 67 8 6 76 98 78 19 83 19

Assume that we can have only 2 runs at a time and total of 3 blocks in memory.



2-Way External Merge-Sort > N=2

?@12 67 8 6 76 98 78 19 83

Run 1 Run 2

Initially, Each Run is of size 1.

Each run is implicitly sorted!

19



2-Way External Merge-Sort > N=2

6 76 98 78 19 83
Run 1 Run2

Memory

Next, we merge two runs at a time.

We can have only 3 blocks in memory

19
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2-Way External Merge-Sort > N=2

23 34 12 67 @ 76 98 78 19 83 19

8 6 8

Memory

Use the extra block to sort.

Write back to memory



23

2-Way External Merge-Sort > N=2

34 12 67 6 8 76 98 19 78

Memory

Lets continue this till the end



2-Way External Merge-Sort > N=2

6 8 76 98 19 78 19

Memory

Now, the size of each run is 2 blocks
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2-Way External Merge-Sort > N=2
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2-Way External Merge-Sort > N=2

6 8 12 23>G4 67 76 98>19 19 78 83

Memory

Now, the size of each run is 4 blocks

60



2-Way External Merge-Sort > N=2

<68 12 23 34 67 76 9819 19 78 83>

Memory

Now, the size of one run is 8 blocks while other is 4 blocks

61
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Transactions

 Transactions are ubiquitous!

* Examples: Banking, Online shopping, Trading, Social media, and so on.



How to define a Transaction?



How to define a Transaction?

* Transaction is a collection of operations.

* For example:
* Moving money from one checkings account to savings account.
* Buying a product from Amazon.



How to define a Transaction?

* Transaction is a unit of program that reads and/or writes one or more data items.

* A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.



How to define a Transaction?

* Transaction is a unit of program that reads and/or writes one or more data items.

* A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

* Also, the reason why transaction is termed as an indivisible unit.
* It either executes in its entirety or nothing at all.



ACID Properties for a Transaction
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ACID Properties for a Transaction

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

* Not referring to database consistency constraints.

* Isolation: For every pair of concurrent (executing at the same time) transactions Ti

and Tj, either Ti finished execution before Tj started, or Ti started execution after Tj
finished.

 Transactions are unaware of other transactions executing

* Durability: Once a transaction completes successfully, any changes it made to the
database should persist, even if there are system failures.
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* When do ACID properties come into play?



ACID Properties for a Transaction

* When do ACID properties come into play?
* Concurrency!
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* But, why is this an issue?



ACID Properties for a Transaction

* When do ACID properties come into play?
* Concurrency!

* In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

* But, why is this an issue?
* Concurrency if not handled well can lead to ACID violations.
* For instance. 2 Race conditions!



Two Concurrent Transactions

T1: T2:

read(A); read(A);

A=A -50; temp=A"*0.1;

write(A); A=A - temp;

read(B); write(A);

B =B + 50; read(B);

write(B). B =B + temp;
write(B)

Notice that they are accessing the same variables A and B.



Conflicting Transactions

Two transactions T1 and T2 if they concurrently
access the same variable and at least one of that

access is a write operation, then they conflict!



Isolation

* Users submit transactions.
 Each transaction should execute as if it were running by itself.
* But running one transactions at a time will give poor performance.

» With the prevalence of multi-core architecture, DBMS should take advantage of the
multiple cores.

* Concurrency permits interleaving the transaction operations.

* Interleaving transactions also permits running one transaction when another is
waiting for some resource (I/O, user input, or fetching data from disk).

* Need a mechanism to interleave transactions but make it appear as if they ran
one-at-a-time.
79



Concurrent Transactions

* Assume that these two transactions are undergoing concurrent execution.

* What are the possible interleaving of these two transactions?

T1:

read(A);
A=A-50;
write(A);
read(B);

B =B + 50;
write(B).

T2:

read(A);
A=A%*0.95
write(A);
read(B);
B=B*1.05;
write(B)



Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide a
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?
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Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?
* Pessimistic: Prevent problems from arising in the first place.
* Optimistic: Assume that conflicts are rare; deal with them after they occur.

* But, how does a concurrency control protocol determine a valid schedule?



Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

e Serializable Schedule?



Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
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the transactions (serial schedule).



Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

* Serializable Schedule = A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

* If each transaction preserves consistency, then the corresponding serializable
schedule preserves consistency!

87
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Isolation Levels Consistency Levels
Correspond to the I in ACID.

Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

Greater the guaranteed isolation among
the transactions, lesser the system
performance.

Isolation levels trade off isolation
guarantees for improved performance.




Isolation Levels vs. Consistency Levels

Isolation Levels
Correspond to the I in ACID.

Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

Greater the guaranteed isolation among
the transactions, lesser the system
performance.

Isolation levels trade off isolation
guarantees for improved performance.

Consistency Levels

Do not correspond to C in ACID.

Unlike the C in ACID, the database
consistency refers to the rules that make a
concurrent, distributed system appear as
a single-threaded, centralized system.

Reads at a particular point in time must
reflect the most recently completed write
(in real-time) of that data item, no matter
which server processed that write.

Consistency levels trade off read results
for improved performance.




Isolation Levels vs. Consistency Levels

* More simply said:
»Whenever you talk about transaction isolation, you will be talking about
isolation levels.

»Whenever you talk about individual operations like read/write, you will talk
about consistency levels.
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