
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 10:

Sorting and Transactions

Assignment 2 is Out!
Deadline: Nov 13, 2025 at 11:59pm

Quiz 2: Nov 6, 2025 (in class)

2

Query Processing

• Last Lecture we looked at Query Processing

• How to measure the cost of a select operation?

• The cost of select operation helps us to decide what type of indexes to use, what
operators and attributes to access.

3

Query Processing

• Last Lecture we looked at Query Processing

• How to measure the cost of a select operation?

• The cost of select operation helps us to decide what type of indexes to use, what
operators and attributes to access.

• Next, we look at Sorting.

4

Why is Sorting Interesting to Us?

5

Why is Sorting Interesting to Us?

• SQL queries can require the output be sorted.

• Efficient query processing:

• Operations like Joins and searching can be implemented.

6

Ways to Sort a set of Keys

• Is it possible to sort a set of keys/records without running a sorting algorithm?

7

Ways to Sort a set of Keys

• Is it possible to sort a set of keys/records without running a sorting algorithm?

• Yes, what if we have access to a B+-tree.

• All the leaves in a B+-tree are sorted!

8

Ways to Sort a set of Keys

• Is it possible to sort a set of keys/records without running a sorting algorithm?

• Yes, what if we have access to a B+-tree.

• All the leaves in a B+-tree are sorted!

• Can we do something more?

9

Top-N Heap Sort

• Say a query contains an ORDER BY clause with a LIMIT.

• The DBMS only needs to scan the data once to find the required number of
elements.

• Specifically, a query asks you to output only first N elements.

10

Top-N Heap Sort

• Say a query contains an ORDER BY clause with a LIMIT.

• The DBMS only needs to scan the data once to find the required number of
elements.

• Specifically, a query asks you to output only first N elements.

• This is also an ideal candidate for Heap Sort!

11

Top-N Heap Sort

• Say a query contains an ORDER BY clause with a LIMIT.

• The DBMS only needs to scan the data once to find the required number of
elements.

• Specifically, a query asks you to output only first N elements.

• This is also an ideal candidate for Heap Sort!

• We are just going to scan data once and maintain an in-memory sorted priority
queue.

12

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

13

23 34 12 67 8 6 76 98 78 19 83 19

Original Data

Sorted Data

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

14

23 34 12 67 8 6 76 98 78 19 83 19

Original Data

Sorted Data

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

15

23 34 12 67 8 6 76 98 78 19 83 19

Original Data

Sorted Data

23

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

16

Original Data

Sorted Data

23 34

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

17

Original Data

Sorted Data

12 23 34

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

18

Original Data

Sorted Data

12 23 34 67

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

19

Original Data

Sorted Data

8 12 23 34

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

20

Original Data

Sorted Data

6 8 12 23

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

21

Original Data

Sorted Data

6 8 12 23

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

22

Original Data

Sorted Data

6 8 12 23

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

23

Original Data

Sorted Data

6 8 12 23

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

24

Original Data

Sorted Data

6 8 12 19

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

25

Original Data

Sorted Data

6 8 12 19

23 34 12 67 8 6 76 98 78 19 83 19

Top-N Heap Sort

• Say, our query is:

 select * from enrolled order by sid

 asc fetch first 4 rows with ties

26

Original Data

Sorted Data

6 8 12 19 19 Tracks all the duplicates!

Ways to Sort a set of Key

• But, having a B+-tree and Top-N Heap Sort sufficient for all the sorting queries?

• What are we still missing?

27

Ways to Sort a set of Key

• But, is having just a B+-tree sufficient to satisfy all the sorting queries?

• What are we still missing?

• B+-tree is just an index.

• Your data needs to be physically sorted too!

• Remember, the benefits of sequential data access only comes when data is stored in
a sorted manner.

28

Ways to Sort a set of Key

• Imagine you have stored the data in your disk in unsorted manner but you are now
trying to fetch it in sorted manner?

• Pretty bad performance as too many disk accesses!

29

Ways to Sort a set of Key

• So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

• Why this difference?

30

Ways to Sort a set of Key

• So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

• Why this difference?

• Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

31

Ways to Sort a set of Key

• So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

• Why this difference?

• Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

• In-memory swapping algorithms? → Quick Sort

• Our focus → Disk sorting algorithms.

32

Ways to Sort a set of Key

• So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

• Why this difference?

• Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

• In-memory swapping algorithms? → Quick Sort

• Our focus → Disk sorting algorithms.

33

External Merge-Sort

• Sorting of relations that do not fit in memory is called external sorting.

• A divide and conquer algorithm!

• Split data into parts (also called as runs).

• Sort each run individually.

• Merge the runs!

34

External Merge-Sort

• What are the challenges for External Merge-Sort?

35

External Merge-Sort

• What are the challenges for External Merge-Sort?

• Number of runs.

• Size of each run.

• Size of memory.

• All these factors work in conjunction to determine how fast can we perform external
merge-sort.

36

N-Way External Merge-Sort

• We are going to run an external merge sort where:

• N total number of runs

• We will assume each run consists of M blocks.

• We will assume the memory can store N+1 blocks.

• We will fetch one block from each run at a time.

• Remember → Often you would decide on the right number of runs based on
how many threads you have, and how many blocks you can store.

37

2-Way External Merge-Sort → N=2

38

23 34 12 67 8 6 76 98 78 19 83 19

Assume that we can have only 2 runs at a time and total of 3 blocks in memory.

2-Way External Merge-Sort → N=2

39

23 34 12 67 8 6 76 98 78 19 83 19

Initially, Each Run is of size 1.

Each run is implicitly sorted!

Run 1 Run 2

2-Way External Merge-Sort → N=2

40

23 34 12 67 8 6 76 98 78 19 83 19

23 34

Next, we merge two runs at a time.

We can have only 3 blocks in memory

Run 1 Run 2

Memory

2-Way External Merge-Sort → N=2

41

23 34 12 67 8 6 76 98 78 19 83 19

23 34

Use the extra block to sort.

Write back to memory

Run 1 Run 2

Memory

2-Way External Merge-Sort → N=2

42

23 34 12 67 8 6 76 98 78 19 83 19

12 67

Use the extra block to sort.

Write back to memory

Memory

2-Way External Merge-Sort → N=2

43

23 34 12 67 8 6 76 98 78 19 83 19

8 6

Use the extra block to sort.

Write back to memory

Memory

2-Way External Merge-Sort → N=2

44

23 34 12 67 6 6 76 98 78 19 83 19

8 6 8

Use the extra block to sort.

Write back to memory

Memory

2-Way External Merge-Sort → N=2

45

23 34 12 67 6 8 76 98 78 19 83 19

8 6 8

Use the extra block to sort.

Write back to memory

Memory

2-Way External Merge-Sort → N=2

46

23 34 12 67 6 8 76 98 19 78 19 83

Lets continue this till the end

Memory

2-Way External Merge-Sort → N=2

47

23 34 12 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

Memory

2-Way External Merge-Sort → N=2

48

23 34 12 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

23 12

Memory

2-Way External Merge-Sort → N=2

49

12 34 12 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

23 67

Memory

2-Way External Merge-Sort → N=2

50

12 34 12 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

23 67 34

Memory

2-Way External Merge-Sort → N=2

51

12 23 12 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

67 34

Memory

2-Way External Merge-Sort → N=2

52

12 23 34 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

67 34

Memory

2-Way External Merge-Sort → N=2

53

12 23 34 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

6 76

Memory

2-Way External Merge-Sort → N=2

54

12 23 34 67 6 8 76 98 19 78 19 83

Now, the size of each run is 2 blocks

19 19

Memory

2-Way External Merge-Sort → N=2

55

12 23 34 67 6 8 76 98 19 19 78 83

Now, the size of each run is 2 blocks

19 19

Memory

2-Way External Merge-Sort → N=2

56

12 23 34 67 6 8 76 98 19 19 78 83

Now, the size of each run is 4 blocks

12 6

Memory

2-Way External Merge-Sort → N=2

57

6 23 34 67 6 8 76 98 19 19 78 83

Now, the size of each run is 4 blocks

12 8

Memory

2-Way External Merge-Sort → N=2

58

6 23 34 67 6 8 76 98 19 19 78 83

Now, the size of each run is 4 blocks

12 8 23

Memory

2-Way External Merge-Sort → N=2

59

6 8 34 67 6 8 76 98 19 19 78 83

Now, the size of each run is 4 blocks

12 23

Memory

2-Way External Merge-Sort → N=2

60

6 8 12 23 34 67 76 98 19 19 78 83

Now, the size of each run is 4 blocks

Memory

2-Way External Merge-Sort → N=2

61

6 8 12 23 34 67 76 98 19 19 78 83

Now, the size of one run is 8 blocks while other is 4 blocks

Memory

Transactions

62

Transactions

• Transactions are ubiquitous!

• Examples: Banking, Online shopping, Trading, Social media, and so on.

63

How to define a Transaction?

64

How to define a Transaction?

• Transaction is a collection of operations.

• For example:

• Moving money from one checkings account to savings account.

• Buying a product from Amazon.

65

How to define a Transaction?

• Transaction is a unit of program that reads and/or writes one or more data items.

• A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

66

How to define a Transaction?

• Transaction is a unit of program that reads and/or writes one or more data items.

• A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

• Also, the reason why transaction is termed as an indivisible unit.

• It either executes in its entirety or nothing at all.

67

ACID Properties for a Transaction

68

?

ACID Properties for a Transaction

• Each database should provide the following four properties for transactions :

69

ACID Properties for a Transaction

• Each database should provide the following four properties for transactions :

• Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

70

ACID Properties for a Transaction

• Each database should provide the following four properties for transactions:

• Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

• Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

71

ACID Properties for a Transaction

• Each database should provide the following four properties for transactions:

• Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

• Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

• Not referring to database consistency constraints.

• Isolation: For every pair of concurrent (executing at the same time) transactions Ti
and Tj , either Ti finished execution before Tj started, or Ti started execution after Tj
finished.

• Transactions are unaware of other transactions executing
72

ACID Properties for a Transaction

• Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

• Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

• Not referring to database consistency constraints.

• Isolation: For every pair of concurrent (executing at the same time) transactions Ti
and Tj , either Ti finished execution before Tj started, or Ti started execution after Tj
finished.

• Transactions are unaware of other transactions executing

• Durability: Once a transaction completes successfully, any changes it made to the
database should persist, even if there are system failures. 73

ACID Properties for a Transaction

• When do ACID properties come into play?

74

ACID Properties for a Transaction

• When do ACID properties come into play?

• Concurrency!

• In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

• But, why is this an issue?

75

ACID Properties for a Transaction

• When do ACID properties come into play?

• Concurrency!

• In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

• But, why is this an issue?

• Concurrency if not handled well can lead to ACID violations.

• For instance. → Race conditions!

76

Two Concurrent Transactions

77

T1:

read(A);
A = A − 50;
write(A);
read(B);
B = B + 50;
write(B).

T2:

read(A);
temp = A * 0.1;
A = A − temp;
write(A);
read(B);
B = B + temp;
write(B)

Notice that they are accessing the same variables A and B.

Conflicting Transactions

78

Two transactions T1 and T2 if they concurrently

access the same variable and at least one of that

access is a write operation, then they conflict!

Isolation

79

• Users submit transactions.

• Each transaction should execute as if it were running by itself.

• But running one transactions at a time will give poor performance.

• With the prevalence of multi-core architecture, DBMS should take advantage of the
multiple cores.

• Concurrency permits interleaving the transaction operations.

• Interleaving transactions also permits running one transaction when another is
waiting for some resource (I/O, user input, or fetching data from disk).

• Need a mechanism to interleave transactions but make it appear as if they ran
one-at-a-time.

Concurrent Transactions

80

T1:

read(A);
A = A − 50;
write(A);
read(B);
B = B + 50;
write(B).

T2:

read(A);
A = A * 0.95;
write(A);
read(B);
B = B * 1.05 ;
write(B)

• Assume that these two transactions are undergoing concurrent execution.

• What are the possible interleaving of these two transactions?

Isolation Support: Concurrency Control

81

• A concurrency control protocol lays down the mechanism for the DBMS to decide a
legal/valid schedule of transactions.

• What are the types of concurrency control protocols?

Isolation Support: Concurrency Control

82

• A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

• What are the types of concurrency control protocols?

• Pessimistic: Prevent problems from arising in the first place.

Isolation Support: Concurrency Control

83

• A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

• What are the types of concurrency control protocols?

• Pessimistic: Prevent problems from arising in the first place.

• Optimistic: Assume that conflicts are rare; deal with them after they occur.

Isolation Support: Concurrency Control

84

• A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

• What are the types of concurrency control protocols?

• Pessimistic: Prevent problems from arising in the first place.

• Optimistic: Assume that conflicts are rare; deal with them after they occur.

• But, how does a concurrency control protocol determine a valid schedule?

Serializable Schedules

85

• Serial Schedule → A schedule that does not interleave the operations of different
transactions.

• Equivalent Schedule → For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

• Serializable Schedule?

Serializable Schedules

86

• Serial Schedule → A schedule that does not interleave the operations of different
transactions.

• Equivalent Schedule → For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

• Serializable Schedule → A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

Serializable Schedules

87

• Serial Schedule → A schedule that does not interleave the operations of different
transactions.

• Equivalent Schedule → For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

• Serializable Schedule → A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

• If each transaction preserves consistency, then the corresponding serializable
schedule preserves consistency!

Isolation Levels vs. Consistency Levels

88

Isolation Levels Consistency Levels

Isolation Levels vs. Consistency Levels

89

Isolation Levels

• Correspond to the I in ACID.

• Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

• Greater the guaranteed isolation among
the transactions, lesser the system
performance.

• Isolation levels trade off isolation
guarantees for improved performance.

Consistency Levels

Isolation Levels vs. Consistency Levels

90

Isolation Levels

• Correspond to the I in ACID.

• Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

• Greater the guaranteed isolation among
the transactions, lesser the system
performance.

• Isolation levels trade off isolation
guarantees for improved performance.

Consistency Levels

• Do not correspond to C in ACID.

• Unlike the C in ACID, the database
consistency refers to the rules that make a
concurrent, distributed system appear as
a single-threaded, centralized system.

• Reads at a particular point in time must
reflect the most recently completed write
(in real-time) of that data item, no matter
which server processed that write.

• Consistency levels trade off read results
for improved performance.

Isolation Levels vs. Consistency Levels

91

• More simply said:

➢Whenever you talk about transaction isolation, you will be talking about
isolation levels.

➢Whenever you talk about individual operations like read/write, you will talk
about consistency levels.

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 2 is Out! Deadline: Nov 13, 2025 at 11:59pm Quiz 2: Nov 6, 2025 (in class)
	Slide 3: Query Processing
	Slide 4: Query Processing
	Slide 5: Why is Sorting Interesting to Us?
	Slide 6: Why is Sorting Interesting to Us?
	Slide 7: Ways to Sort a set of Keys
	Slide 8: Ways to Sort a set of Keys
	Slide 9: Ways to Sort a set of Keys
	Slide 10: Top-N Heap Sort
	Slide 11: Top-N Heap Sort
	Slide 12: Top-N Heap Sort
	Slide 13: Top-N Heap Sort
	Slide 14: Top-N Heap Sort
	Slide 15: Top-N Heap Sort
	Slide 16: Top-N Heap Sort
	Slide 17: Top-N Heap Sort
	Slide 18: Top-N Heap Sort
	Slide 19: Top-N Heap Sort
	Slide 20: Top-N Heap Sort
	Slide 21: Top-N Heap Sort
	Slide 22: Top-N Heap Sort
	Slide 23: Top-N Heap Sort
	Slide 24: Top-N Heap Sort
	Slide 25: Top-N Heap Sort
	Slide 26: Top-N Heap Sort
	Slide 27: Ways to Sort a set of Key
	Slide 28: Ways to Sort a set of Key
	Slide 29: Ways to Sort a set of Key
	Slide 30: Ways to Sort a set of Key
	Slide 31: Ways to Sort a set of Key
	Slide 32: Ways to Sort a set of Key
	Slide 33: Ways to Sort a set of Key
	Slide 34: External Merge-Sort
	Slide 35: External Merge-Sort
	Slide 36: External Merge-Sort
	Slide 37: N-Way External Merge-Sort
	Slide 38: 2-Way External Merge-Sort  N=2
	Slide 39: 2-Way External Merge-Sort  N=2
	Slide 40: 2-Way External Merge-Sort  N=2
	Slide 41: 2-Way External Merge-Sort  N=2
	Slide 42: 2-Way External Merge-Sort  N=2
	Slide 43: 2-Way External Merge-Sort  N=2
	Slide 44: 2-Way External Merge-Sort  N=2
	Slide 45: 2-Way External Merge-Sort  N=2
	Slide 46: 2-Way External Merge-Sort  N=2
	Slide 47: 2-Way External Merge-Sort  N=2
	Slide 48: 2-Way External Merge-Sort  N=2
	Slide 49: 2-Way External Merge-Sort  N=2
	Slide 50: 2-Way External Merge-Sort  N=2
	Slide 51: 2-Way External Merge-Sort  N=2
	Slide 52: 2-Way External Merge-Sort  N=2
	Slide 53: 2-Way External Merge-Sort  N=2
	Slide 54: 2-Way External Merge-Sort  N=2
	Slide 55: 2-Way External Merge-Sort  N=2
	Slide 56: 2-Way External Merge-Sort  N=2
	Slide 57: 2-Way External Merge-Sort  N=2
	Slide 58: 2-Way External Merge-Sort  N=2
	Slide 59: 2-Way External Merge-Sort  N=2
	Slide 60: 2-Way External Merge-Sort  N=2
	Slide 61: 2-Way External Merge-Sort  N=2
	Slide 62: Transactions
	Slide 63: Transactions
	Slide 64: How to define a Transaction?
	Slide 65: How to define a Transaction?
	Slide 66: How to define a Transaction?
	Slide 67: How to define a Transaction?
	Slide 68: ACID Properties for a Transaction
	Slide 69: ACID Properties for a Transaction
	Slide 70: ACID Properties for a Transaction
	Slide 71: ACID Properties for a Transaction
	Slide 72: ACID Properties for a Transaction
	Slide 73: ACID Properties for a Transaction
	Slide 74: ACID Properties for a Transaction
	Slide 75: ACID Properties for a Transaction
	Slide 76: ACID Properties for a Transaction
	Slide 77: Two Concurrent Transactions
	Slide 78: Conflicting Transactions
	Slide 79: Isolation
	Slide 80: Concurrent Transactions
	Slide 81: Isolation Support: Concurrency Control
	Slide 82: Isolation Support: Concurrency Control
	Slide 83: Isolation Support: Concurrency Control
	Slide 84: Isolation Support: Concurrency Control
	Slide 85: Serializable Schedules
	Slide 86: Serializable Schedules
	Slide 87: Serializable Schedules
	Slide 88: Isolation Levels vs. Consistency Levels
	Slide 89: Isolation Levels vs. Consistency Levels
	Slide 90: Isolation Levels vs. Consistency Levels
	Slide 91: Isolation Levels vs. Consistency Levels

