Database Processing

CS 451 /551

Lecture 10:
Sorting and Transactions

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 2 is Out!
Deadline: Nov 13, 2025 at 11:59pm

Quiz 2: Nov 6, 2025 (in class)

Query Processing

* Last Lecture we looked at Query Processing
* How to measure the cost of a select operation?

* The cost of select operation helps us to decide what type of indexes to use, what
operators and attributes to access.

Query Processing

* Last Lecture we looked at Query Processing
* How to measure the cost of a select operation?

* The cost of select operation helps us to decide what type of indexes to use, what
operators and attributes to access.

* Next, we look at Sorting.

Why is Sorting Interesting to Us?

Why is Sorting Interesting to Us?

* SQL queries can require the output be sorted.

» Efficient query processing:
* Operations like Joins and searching can be implemented.

Ways to Sort a set of Keys

* Is it possible to sort a set of keys/records without running a sorting algorithm?

Ways to Sort a set of Keys

* Is it possible to sort a set of keys/records without running a sorting algorithm?

* Yes, what if we have access to a B*-tree.
o All the leaves in a B*-tree are sorted!

Ways to Sort a set of Keys

* Is it possible to sort a set of keys/records without running a sorting algorithm?

* Yes, what if we have access to a B*-tree.
o All the leaves in a B*-tree are sorted!

* Can we do something more?

Top-N Heap Sort

* Say a query contains an ORDER BY clause with a LIMIT.

* The DBMS only needs to scan the data once to find the required number of
elements.

* Specifically, a query asks you to output only first N elements.

Top-N Heap Sort

* Say a query contains an ORDER BY clause with a LIMIT.

* The DBMS only needs to scan the data once to find the required number of
elements.

* Specifically, a query asks you to output only first N elements.

 This is also an ideal candidate for Heap Sort!

Top-N Heap Sort

* Say a query contains an ORDER BY clause with a LIMIT.

* The DBMS only needs to scan the data once to find the required number of
elements.

* Specifically, a query asks you to output only first N elements.
 This is also an ideal candidate for Heap Sort!

* We are just going to scan data once and maintain an in-memory sorted priority
queue.

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data
23 34 12 67 8 6 76 98 78

Sorted Data

19

83

19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data
@34 2 67 8 6 76 98 78

Sorted Data

19

83

19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data
@34 2 67 8 6 76 98 78

Sorted Data

23

19

83

19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

2312 67 8 6 76 98 78

Sorted Data

23 34

19

83

19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data
23 34@67 S 6 76 98 78

Sorted Data

12 23 34

19

83

19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 128 6 76 98 78

Sorted Data

12 23 34 67

19

83

19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 676 76 98 78 19 83 19

Sorted Data

8 12 23 34

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data
23 34 12 67 8@76 98 78 19 83 19

Sorted Data

6 8§ 12 23

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 698 78 19 83 19

Sorted Data

6 8§ 12 23

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 6 7678 19 8 19

Sorted Data

6 8§ 12 23

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 6 76 9819 83 19

Sorted Data

6 8§ 12 23

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 6 76 98 7883 19

Sorted Data

6 g 12 19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 6 76 98 78 1919

Sorted Data

6 g 12 19

Top-N Heap Sort

* Say, our query is:
select * from enrolled order by sid

asc fetch first 4 rows with ties

Original Data

23 34 12 67 8 6 76 98 78 19 83

Sorted Data

6 8§ 12 19 19 Tracks all the duplicates!

Ways to Sort a set of Key

* But, having a B*-tree and Top-N Heap Sort sufficient for all the sorting queries?

* What are we still missing?

Ways to Sort a set of Key

* But, is having just a B*-tree sufficient to satisfy all the sorting queries?
* What are we still missing?

* B*-tree is just an index.

* Your data needs to be physically sorted too!

* Remember, the benefits of sequential data access only comes when data is stored in
a sorted manner.

Ways to Sort a set of Key

* Imagine you have stored the data in your disk in unsorted manner but you are now
trying to fetch it in sorted manner?

* Pretty bad performance as too many disk accesses!

Ways to Sort a set of Key

* So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

* Why this difference?

Ways to Sort a set of Key

* So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

* Why this difference?

* Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

Ways to Sort a set of Key

* So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

* Why this difference?

* Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

* In-memory swapping algorithms? = Quick Sort

* Our focus = Disk sorting algorithms.

Ways to Sort a set of Key

* So, depending on where your data resides (in-memory or disk, you select a sorting
algorithm.

* Why this difference?

* Because, an in-memory sorting algorithm does not need to worry about expensive
data swapping operations!

* In-memory swapping algorithms? = Quick Sort

* Our focus = Disk sorting algorithms.

External Merge-Sort

* Sorting of relations that do not fit in memory is called external sorting.
* A divide and conquer algorithm!

* Split data into parts (also called as runs).

* Sort each run individually.

* Merge the runs!

External Merge-Sort

* What are the challenges for External Merge-Sort?

External Merge-Sort

* What are the challenges for External Merge-Sort?
* Number of runs.

» Size of each run.

* Size of memory.

* All these factors work in conjunction to determine how fast can we perform external
merge-sort.

N-Way External Merge-Sort

* We are going to run an external merge sort where:
N total number of runs

« We will assume each run consists of M blocks.
* We will assume the memory can store N+1 blocks.
 We will fetch one block from each run at a time.

* Remember = Often you would decide on the right number of runs based on
how many threads you have, and how many blocks you can store.

2-Way External Merge-Sort > N=2

23 34 12 67 8 6 76 98 78 19 83 19

Assume that we can have only 2 runs at a time and total of 3 blocks in memory.

2-Way External Merge-Sort > N=2

?@12 67 8 6 76 98 78 19 83

Run 1 Run 2

Initially, Each Run is of size 1.

Each run is implicitly sorted!

19

2-Way External Merge-Sort > N=2

6 76 98 78 19 83
Run 1 Run2

Memory

Next, we merge two runs at a time.

We can have only 3 blocks in memory

19

2-Way External Merge-Sort > N=2

6 76 98 78 19 83
Run 1 Run2

Memory

Use the extra block to sort.

Write back to memory

19

2-Way External Merge-Sort > N=2

23 34 1)) 8 6 7 98 78 19 83

12 | 67

Memory

Use the extra block to sort.

Write back to memory

2-Way External Merge-Sort > N=2

23 34 12 67 @ 76 98 78 19 83 19

8 6

Memory

Use the extra block to sort.

Write back to memory

2-Way External Merge-Sort > N=2

23 34 12 67 @@ 76 98 78 19 83 19

8 6 8

Memory

Use the extra block to sort.

Write back to memory

2-Way External Merge-Sort > N=2

23 34 12 67 @ 76 98 78 19 83 19

8 6 8

Memory

Use the extra block to sort.

Write back to memory

23

2-Way External Merge-Sort > N=2

34 12 67 6 8 76 98 19 78

Memory

Lets continue this till the end

2-Way External Merge-Sort > N=2

6 8 76 98 19 78 19

Memory

Now, the size of each run is 2 blocks

83

2-Way External Merge-Sort > N=2

6 8 76 98 19 78 19

23 | 12

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

6 8 76 98 19 78 19

23 | 67

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

6 8 76 98 19 78 19

23 | 67 | 34

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

@6 8 76 98 19 78 19

67 | 34

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

@6 8 76 98 19 78 19

67 | 34

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

12 23 34 67 (6 8>T 9819 78 19 83

6 | 76

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

2 23 34 & 6 8 7 9819 7D 8D

19 | 19

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

12 23 34 6 6 8 76 9 (19 19 @8 83

19 | 19

Memory

Now, the size of each run is 2 blocks

2-Way External Merge-Sort > N=2

2 23 34 67> 8 76 98>19 19 78 83

12 | 6

Memory

Now, the size of each run is 4 blocks

2-Way External Merge-Sort > N=2

6 23 34 67> 8 76 98>19 19 78 83

12 | 8

Memory

Now, the size of each run is 4 blocks

2-Way External Merge-Sort > N=2

6 23 34 67> 8 76 98>19 19 78 83

12 | 8 | 23

Memory

Now, the size of each run is 4 blocks

2-Way External Merge-Sort > N=2

6 8 34 6> 8 76 98>19 19 78 83

12 23

Memory

Now, the size of each run is 4 blocks

2-Way External Merge-Sort > N=2

6 8 12 23>G4 67 76 98>19 19 78 83

Memory

Now, the size of each run is 4 blocks

60

2-Way External Merge-Sort > N=2

<68 12 23 34 67 76 9819 19 78 83>

Memory

Now, the size of one run is 8 blocks while other is 4 blocks

61

Transactions

Transactions

 Transactions are ubiquitous!

* Examples: Banking, Online shopping, Trading, Social media, and so on.

How to define a Transaction?

How to define a Transaction?

* Transaction is a collection of operations.

* For example:
* Moving money from one checkings account to savings account.
* Buying a product from Amazon.

How to define a Transaction?

* Transaction is a unit of program that reads and/or writes one or more data items.

* A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

How to define a Transaction?

* Transaction is a unit of program that reads and/or writes one or more data items.

* A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

* Also, the reason why transaction is termed as an indivisible unit.
* It either executes in its entirety or nothing at all.

ACID Properties for a Transaction

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions :

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions :

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions:

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions:

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

* Not referring to database consistency constraints.

* Isolation: For every pair of concurrent (executing at the same time) transactions Ti

and Tj, either Ti finished execution before Tj started, or Ti started execution after Tj
finished.

 Transactions are unaware of other transactions executing

ACID Properties for a Transaction

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

* Not referring to database consistency constraints.

* Isolation: For every pair of concurrent (executing at the same time) transactions Ti

and Tj, either Ti finished execution before Tj started, or Ti started execution after Tj
finished.

 Transactions are unaware of other transactions executing

* Durability: Once a transaction completes successfully, any changes it made to the
database should persist, even if there are system failures.

ACID Properties for a Transaction

* When do ACID properties come into play?

ACID Properties for a Transaction

* When do ACID properties come into play?
* Concurrency!

* In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

* But, why is this an issue?

ACID Properties for a Transaction

* When do ACID properties come into play?
* Concurrency!

* In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

* But, why is this an issue?
* Concurrency if not handled well can lead to ACID violations.
* For instance. 2 Race conditions!

Two Concurrent Transactions

T1: T2:

read(A); read(A);

A=A -50; temp=A"*0.1;

write(A); A=A - temp;

read(B); write(A);

B =B + 50; read(B);

write(B). B =B + temp;
write(B)

Notice that they are accessing the same variables A and B.

Conflicting Transactions

Two transactions T1 and T2 if they concurrently
access the same variable and at least one of that

access is a write operation, then they conflict!

Isolation

* Users submit transactions.
 Each transaction should execute as if it were running by itself.
* But running one transactions at a time will give poor performance.

» With the prevalence of multi-core architecture, DBMS should take advantage of the
multiple cores.

* Concurrency permits interleaving the transaction operations.

* Interleaving transactions also permits running one transaction when another is
waiting for some resource (I/O, user input, or fetching data from disk).

* Need a mechanism to interleave transactions but make it appear as if they ran
one-at-a-time.
79

Concurrent Transactions

* Assume that these two transactions are undergoing concurrent execution.

* What are the possible interleaving of these two transactions?

T1:

read(A);
A=A-50;
write(A);
read(B);

B =B + 50;
write(B).

T2:

read(A);
A=A%*0.95
write(A);
read(B);
B=B*1.05;
write(B)

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide a
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?

* Pessimistic: Prevent problems from arising in the first place.

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?
* Pessimistic: Prevent problems from arising in the first place.

* Optimistic: Assume that conflicts are rare; deal with them after they occur.

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?
* Pessimistic: Prevent problems from arising in the first place.
* Optimistic: Assume that conflicts are rare; deal with them after they occur.

* But, how does a concurrency control protocol determine a valid schedule?

Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

e Serializable Schedule?

Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

* Serializable Schedule = A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

* Serializable Schedule = A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

* If each transaction preserves consistency, then the corresponding serializable
schedule preserves consistency!

87

Isolation Levels vs. Consistency Levels

Isolation Levels Consistency Levels

Isolation Levels vs. Consistency Levels

Isolation Levels Consistency Levels
Correspond to the I in ACID.

Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

Greater the guaranteed isolation among
the transactions, lesser the system
performance.

Isolation levels trade off isolation
guarantees for improved performance.

Isolation Levels vs. Consistency Levels

Isolation Levels
Correspond to the I in ACID.

Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

Greater the guaranteed isolation among
the transactions, lesser the system
performance.

Isolation levels trade off isolation
guarantees for improved performance.

Consistency Levels

Do not correspond to C in ACID.

Unlike the C in ACID, the database
consistency refers to the rules that make a
concurrent, distributed system appear as
a single-threaded, centralized system.

Reads at a particular point in time must
reflect the most recently completed write
(in real-time) of that data item, no matter
which server processed that write.

Consistency levels trade off read results
for improved performance.

Isolation Levels vs. Consistency Levels

* More simply said:
»Whenever you talk about transaction isolation, you will be talking about
isolation levels.

»Whenever you talk about individual operations like read/write, you will talk
about consistency levels.

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 2 is Out! Deadline: Nov 13, 2025 at 11:59pm Quiz 2: Nov 6, 2025 (in class)
	Slide 3: Query Processing
	Slide 4: Query Processing
	Slide 5: Why is Sorting Interesting to Us?
	Slide 6: Why is Sorting Interesting to Us?
	Slide 7: Ways to Sort a set of Keys
	Slide 8: Ways to Sort a set of Keys
	Slide 9: Ways to Sort a set of Keys
	Slide 10: Top-N Heap Sort
	Slide 11: Top-N Heap Sort
	Slide 12: Top-N Heap Sort
	Slide 13: Top-N Heap Sort
	Slide 14: Top-N Heap Sort
	Slide 15: Top-N Heap Sort
	Slide 16: Top-N Heap Sort
	Slide 17: Top-N Heap Sort
	Slide 18: Top-N Heap Sort
	Slide 19: Top-N Heap Sort
	Slide 20: Top-N Heap Sort
	Slide 21: Top-N Heap Sort
	Slide 22: Top-N Heap Sort
	Slide 23: Top-N Heap Sort
	Slide 24: Top-N Heap Sort
	Slide 25: Top-N Heap Sort
	Slide 26: Top-N Heap Sort
	Slide 27: Ways to Sort a set of Key
	Slide 28: Ways to Sort a set of Key
	Slide 29: Ways to Sort a set of Key
	Slide 30: Ways to Sort a set of Key
	Slide 31: Ways to Sort a set of Key
	Slide 32: Ways to Sort a set of Key
	Slide 33: Ways to Sort a set of Key
	Slide 34: External Merge-Sort
	Slide 35: External Merge-Sort
	Slide 36: External Merge-Sort
	Slide 37: N-Way External Merge-Sort
	Slide 38: 2-Way External Merge-Sort  N=2
	Slide 39: 2-Way External Merge-Sort  N=2
	Slide 40: 2-Way External Merge-Sort  N=2
	Slide 41: 2-Way External Merge-Sort  N=2
	Slide 42: 2-Way External Merge-Sort  N=2
	Slide 43: 2-Way External Merge-Sort  N=2
	Slide 44: 2-Way External Merge-Sort  N=2
	Slide 45: 2-Way External Merge-Sort  N=2
	Slide 46: 2-Way External Merge-Sort  N=2
	Slide 47: 2-Way External Merge-Sort  N=2
	Slide 48: 2-Way External Merge-Sort  N=2
	Slide 49: 2-Way External Merge-Sort  N=2
	Slide 50: 2-Way External Merge-Sort  N=2
	Slide 51: 2-Way External Merge-Sort  N=2
	Slide 52: 2-Way External Merge-Sort  N=2
	Slide 53: 2-Way External Merge-Sort  N=2
	Slide 54: 2-Way External Merge-Sort  N=2
	Slide 55: 2-Way External Merge-Sort  N=2
	Slide 56: 2-Way External Merge-Sort  N=2
	Slide 57: 2-Way External Merge-Sort  N=2
	Slide 58: 2-Way External Merge-Sort  N=2
	Slide 59: 2-Way External Merge-Sort  N=2
	Slide 60: 2-Way External Merge-Sort  N=2
	Slide 61: 2-Way External Merge-Sort  N=2
	Slide 62: Transactions
	Slide 63: Transactions
	Slide 64: How to define a Transaction?
	Slide 65: How to define a Transaction?
	Slide 66: How to define a Transaction?
	Slide 67: How to define a Transaction?
	Slide 68: ACID Properties for a Transaction
	Slide 69: ACID Properties for a Transaction
	Slide 70: ACID Properties for a Transaction
	Slide 71: ACID Properties for a Transaction
	Slide 72: ACID Properties for a Transaction
	Slide 73: ACID Properties for a Transaction
	Slide 74: ACID Properties for a Transaction
	Slide 75: ACID Properties for a Transaction
	Slide 76: ACID Properties for a Transaction
	Slide 77: Two Concurrent Transactions
	Slide 78: Conflicting Transactions
	Slide 79: Isolation
	Slide 80: Concurrent Transactions
	Slide 81: Isolation Support: Concurrency Control
	Slide 82: Isolation Support: Concurrency Control
	Slide 83: Isolation Support: Concurrency Control
	Slide 84: Isolation Support: Concurrency Control
	Slide 85: Serializable Schedules
	Slide 86: Serializable Schedules
	Slide 87: Serializable Schedules
	Slide 88: Isolation Levels vs. Consistency Levels
	Slide 89: Isolation Levels vs. Consistency Levels
	Slide 90: Isolation Levels vs. Consistency Levels
	Slide 91: Isolation Levels vs. Consistency Levels

