Database Processing

CS 451 /551

Lecture 11:

Transactions and Concurrency Control

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 2 is Out!
Deadline: Nov 13, 2025 at 11:59pm

Assignment 3 will be released on Nov 13, 2025!

Transactions

 Transactions are ubiquitous!

* Examples: Banking, Online shopping, Trading, Social media, and so on.

How to define a Transaction?

How to define a Transaction?

* Transaction is a collection of operations.

* For example:
* Moving money from one checkings account to savings account.
* Buying a product from Amazon.

How to define a Transaction?

* Transaction is a unit of program that reads and/or writes one or more data items.

* A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

How to define a Transaction?

* Transaction is a unit of program that reads and/or writes one or more data items.

* A common way to write a transaction in popular DBMS is by placing the body of the
transaction between, “begin transaction” and “end transaction”.

* Also, the reason why transaction is termed as an indivisible unit.
* It either executes in its entirety or nothing at all.

Definitions and Notations

* Database:
* A collection of data-items or records (A, B, C, D, ...).

 Transactions:
* A set of read/write operations:
* R(A) = implies Read a data-item/record A.
* W(A) = implies Write a data-item/record A.

ACID Properties for a Transaction

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions :

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions:

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

ACID Properties for a Transaction

* Each database should provide the following four properties for transactions:

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

* Not referring to database consistency constraints.

* Isolation: For every pair of concurrent (executing at the same time) transactions Ti

and Tj, either Ti finished execution before Tj started, or Ti started execution after Tj
finished.

 Transactions are unaware of other transactions executing

ACID Properties for a Transaction

 Atomicity: Either all operations of the transaction are reflected properly in the
database, or none are.

* Consistency: Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

* Isolation: For every pair of concurrent (executing at the same time) transactions Ti
and Tj, either Ti finished execution before Tj started, or Ti started execution after Tj

finished.
 Transactions are unaware of other transactions executing

* Durability: Once a transaction completes successfully, any changes it made to the
database should persist, even if there are system failures.

ACID Properties for a Transaction

* When do ACID properties come into play?

ACID Properties for a Transaction

* When do ACID properties come into play?
* Concurrency!

* In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

* But, why is this an issue?

ACID Properties for a Transaction

* When do ACID properties come into play?
* Concurrency!

* In a concurrent system or database, two or more transactions may attempt to fetch
the same data.

* But, why is this an issue?
* Concurrency if not handled well can lead to ACID violations.
* For instance. 2 Race conditions!

Two Concurrent Transactions

T1: T2:

read(A); read(A);

A=A -50; temp=A"*0.1;

write(A); A=A - temp;

read(B); write(A);

B =B + 50; read(B);

write(B). B =B + temp;
write(B)

Notice that they are accessing the same variables A and B.

Atomicity

* What do you think happens at DBMS after you execute a transaction?

Atomicity

* What do you think happens at DBMS after you execute a transaction?
* The transaction commits after completing all the operations!
* The transaction aborts.

Atomicity

* What do you think happens at DBMS after you execute a transaction?
* The transaction commits after completing all the operations!
* The transaction aborts.

* What is meant by transaction commits or aborts?

Atomicity

* What do you think happens at DBMS after you execute a transaction?
* The transaction commits after completing all the operations!
* The transaction aborts.

* What is meant by a transaction commits or aborts?
* Commits = The result of executing the transaction will persist.
* Aborts 2 No trace of the transaction will exist.

Atomicity

 DBMS guarantees atomicity.

* From a user's point of view: a transaction always either executes all its
operations or executes none at all.

Atomicity

* How to provide support for atomicity in the DBMS?

Atomicity
* How to provide support for atomicity in the DBMS?

* Two ways:

* Logging
* Shadow Paging (not preferred)

Atomicity Support: Logging

Atomicity Support: Logging

* Alog is like a ledger or file that records all events or actions.
* DBMS logs every action so that it can undo the actions of aborted transactions.

* Essentially, you are noting down:
* All the operations that you executed.
* Any record in memory/disk you added/deleted/modified.
* And the order of performing these operations.

* All of this information is also termed as undo records.
* You may have heard of the black box in airplanes = A form of logging.

* Audit Trail? = A form of logging.

Atomicity Support: Shadow Paging

Atomicity Support: Shadow Paging

* DBMS creates copies of each page.

* Effects of a transaction are applied to a specific copy.

* Only when the transaction commits, the page copy is made visible to others.
* Clearly, extremely bad in performance!

* Hard to maintain and page merge may be necessary.

Consistency

* A transaction must preserve database consistency

+ If a transaction is run atomically in isolation starting from a consistent database,
the database must again be consistent at the end of the transaction.

* Need to preserve the data integrity constraints like referential integrity, foreign key
constraints, etc.

* Need to preserve application-dependent consistency constraints that are too
complex to state using the SQL constructs for data integrity.

* Responsibility of the programmer who codes a transaction.

* Notice that the C in ACID is the only one that is not under the control of the system!

Isolation

e Users submit transactions.

* Each transaction should execute as if it is running by itself.

Isolation

* Users submit transactions.
* Each transaction should execute as if it is running by itself.

* But running one transactions at a time will give poor performance.

31

Isolation

* Users submit transactions.
 Each transaction should execute as if it were running by itself.
* But running one transactions at a time will give poor performance.

» With the prevalence of multi-core architecture, DBMS should take advantage of the
multiple cores.

* Concurrency permits interleaving the transaction operations.

* Interleaving transactions also permits running one transaction when another is
waiting for some resource (I/O, user input, or fetching data from disk).

* Need a mechanism to interleave transactions but make it appear as if they ran
one-at-a-time.
32

Concurrent Transactions

* Assume that these two transactions are undergoing concurrent execution.

* What are the possible interleaving of these two transactions?

T1:

read(A);
A=A-50;
write(A);
read(B);

B =B + 50;
write(B).

T2:

read(A);
A=A%*0.95
write(A);
read(B);
B=B*1.05;
write(B)

Concurrent Transactions

* Before we determine possible inter-leavings, we need to do a bunch of tasks.

* First, we need to know the possible set of values for A and B at the end of
running these transactions (Say, initially A = B =50):

* A+B=100*1.05=105

T1: T2:

read(A); read(A);
A=A -50; A=A*1.05
write(A); write(A);
read(B); read(B);

B =B +50; B=B*1.05;

write(B). write(B)

Concurrent Transactions

* Next, we transform these transactions to the database perspective.

* Specifically, we need to worry only about read/write operations as only
those impact the database.

T1: T2:

read(A); read(A);
A=A -50; A=A%0.95
write(A); write(A);
read(B); read(B);

B =B +50; B=B*1.05;

write(B). write(B)

Concurrent Transactions

* We need to worry only about read/write operations as only those impact
the database.

* So, we re-write these transactions as just a set of read/write operations.

T1: T2:
Begin Begin
read(A) read(A)
write(A) write(A)
read(B) read(B)
write(B) write(B)

End End

Serial Execution

* One legal interleaving is serial execution:

 Either T1 2 T2, or T2 =2 T1.

 Here, the notation T1 = T2 states that first execute transaction T1, and
then execute T2.

Time

T1:

Begin
read(A)
write(A)
read(B)
write(B)
End

Serial Execution

T2:

Begin
read(A)
write(A)
read(B)
write(B)
End

Time

T1:

Begin
read(A)
write(A)
read(B)
write(B)
End

T2:

Begin
read(A)
write(A)
read(B)
write(B)
End

38

Serial Execution

* Serial execution is a legal interleaving:
* It guarantees isolation.

* But, serial execution does not take advantage of multi-core architecture.

Schedule

* A schedule states the order of
executing different operations
of a transaction.

* The following is a serial
schedule as it does not
interleave the operations of
different transactions.

Time

T1:

Begin
read(A)
write(A)
read(B)
write(B)
End

T2:

Begin
read(A)
write(A)
read(B)
write(B)
End

Another Interleaving (I)

Time

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

Is this a legal
interleaving?

Another Interleaving (I)

Time

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

Is this a legal
interleaving?

Yes!

Another Interleaving (II)

Time

T1:

Begin
read(A)

write(A)
read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

Is this a legal
interleaving?

Another Interleaving (II)

Time

T1:

Begin
read(A)

write(A)
read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

Is this a legal
interleaving?

No!

T1’s write(A)
does not follow
its read(A).

Conflicting Transactions

Two transactions T1 and T2 if they concurrently
access the same variable and at least one of that

access is a write operation, then they conflict!

Conflicting Transactions

* Interleaving concurrent transactions can lead to the following three anomalies:
* Read-Write Conflicts (R-W)
* Write-Read Conflicts (W-R)
* Write-Write Conflicts (W-W)

Read-Write Conflict

* Unrepeatable Read?

Read-Write Conflict

* Unrepeatable Read: A transaction gets different values when reading the same
object multiple times.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
Begin
read(A)
write(A)
read(A) End

End

Read-Write Conflict

* Unrepeatable Read: A transaction gets different values when reading the same
object multiple times.

* Say, initially A = 50.

T1: T2:

Begin
Output > 50
Begin
read(A)
write(A)
read(A) End
End

Read-Write Conflict

* Unrepeatable Read: A transaction gets different values when reading the same
object multiple times.

* Say, initially A = 50.

T1: T2:
Begin
Output - 50 read(A)
Begin
write(A)
read(A) End

End

Read-Write Conflict

* Unrepeatable Read: A transaction gets different values when reading the same
object multiple times.

* Say, initially A = 50.

T1: T2:
Begin
A =100 read(A)
Begin
rei I ‘ i |
read(A) End

End

Read-Write Conflict

* Unrepeatable Read: A transaction gets different values when reading the same
object multiple times.

* Say, initially A = 50.

T1: T2:
Begin
Output - 100 read(A)
Begin
read(A)
write(A)

End

Eng

Write-Read Conflict

* Dirty Read?

Write-Read Conflict

* Dirty Read: One transaction reads data written by another transaction that has not
committed yet.

* Say, initially A = 50.

T1: T2:

Begin

read(A)

write(A) Begin
read(A)
write(A)
End

Abort

Write-Read Conflict

* Dirty Read: One transaction reads data written by another transaction that has not
committed yet.

* Say, initially A = 50.

T1: T2:
Begin
Output > 50
write(A) Begin
read(A)
write(A)
End

Abort

Write-Read Conflict

* Dirty Read: One transaction reads data written by another transaction that has not
committed yet.

* Say, initially A = 50.

T1: T2:
Begin
A =100 read(A)

Begin
read(A)
write(A)
End

Abort

Write-Read Conflict

* Dirty Read: One transaction reads data written by another transaction that has not
committed yet.

* Say, initially A = 50.

T1: T2:
Begin
Output - 100 read(A)
write(A) Begin
write(A)
End

Abort

Write-Read Conflict

* Dirty Read: One transaction reads data written by another transaction that has not
committed yet.

* Say, initially A = 50.

T1: T2:
Begin
Output - 150 read(A)
write(A) Begin
rei I ‘ i |
End

Abort

Write-Read Conflict

* Dirty Read: One transaction reads data written by another transaction that has not
committed yet.

* Say, initially A = 50.

T1: T2:
Begin
Transaction T1 read(A)
has to be aborted write(A) Begin
read(A)
write(A)
End

Write-Write Conflict

* Lost Update?

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
Begin
read(A)
write(A)
write(A)
write(B)
End
write(B)

End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
Output - 50 feea%;&)
write(A)
write(A)
write(B)
End
write(B)

End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
Begin
Output - 50
write(A)
write(A)
write(B)
End
write(B)

End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:

Begin

read(A)

_ Begin
A =100 read(A)

write(A)
write(B)
End

write(B)
End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
_ Begin

A =100 read(A)
write(A)

Previous update

missed! write(B)

End

write(B)

End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
_ Begin

A =100 read(A)
write(A)

B =100 write(A)

End

write(B)

End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
_ Begin
A =100 read(A)
write(A)
B =150 write(A)
write(B)
End

Qrrite(B) >

End

Write-Write Conflict

* Lost Update = One transaction overwrites uncommitted data from another
uncommitted transaction.

* Say, initially A = 50.

T1: T2:
Begin
read(A)
A =100 Begin This leads to unexpected
read(A) results of 100,150 when it
write(A)
B =150 write(A) should have been 150, 150.
write(B)
End

Qrrite(B) >

End

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide a
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?

* Pessimistic: Prevent problems from arising in the first place.

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?
* Pessimistic: Prevent problems from arising in the first place.

* Optimistic: Assume that conflicts are rare; deal with them after they occur.

Isolation Support: Concurrency Control

* A concurrency control protocol lays down the mechanism for the DBMS to decide
legal/valid schedule of transactions.

* What are the types of concurrency control protocols?
* Pessimistic: Prevent problems from arising in the first place.
* Optimistic: Assume that conflicts are rare; deal with them after they occur.

* But, how does a concurrency control protocol determine a valid schedule?

Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

e Serializable Schedule?

Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

* Serializable Schedule = A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

Serializable Schedules

* Serial Schedule - A schedule that does not interleave the operations of different
transactions.

* Equivalent Schedule = For any database state, the effect of executing the first
schedule is identical to the effect of executing the second schedule.

* Serializable Schedule = A schedule that is equivalent to some serial execution of
the transactions (serial schedule).

* If each transaction preserves consistency, then the corresponding serializable
schedule preserves consistency!

75

Isolation Levels vs. Consistency Levels

Isolation Levels Consistency Levels

Isolation Levels vs. Consistency Levels

Isolation Levels Consistency Levels
Correspond to the I in ACID.

Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

Greater the guaranteed isolation among
the transactions, lesser the system
performance.

Isolation levels trade off isolation
guarantees for improved performance.

Isolation Levels vs. Consistency Levels

Isolation Levels
Correspond to the I in ACID.

Database isolation is the ability of a
database to allow a transaction to execute
as if there are no other concurrently
running transactions.

Greater the guaranteed isolation among
the transactions, lesser the system
performance.

Isolation levels trade off isolation
guarantees for improved performance.

Consistency Levels

Do not correspond to C in ACID.

Unlike the C in ACID, the database
consistency refers to the rules that make a
concurrent, distributed system appear as
a single-threaded, centralized system.

Reads at a particular point in time must
reflect the most recently completed write
(in real-time) of that data item, no matter
which server processed that write.

Consistency levels trade off read results
for improved performance.

Isolation Levels vs. Consistency Levels

* More simply said:
»Whenever you talk about transaction isolation, you will be talking about
isolation levels.

»Whenever you talk about individual operations like read/write, you will talk
about consistency levels.

Serializable Isolation Level

 Also known as serializability.

* The ability of a DBMS to run transactions in parallel, but in a way that they are
running, serially, that is, one after another.

* Thus, if the DBMS can ensure a serializable schedule for a set of transactions, then
we say that the DBMS is offering serializability or serializable isolation level.

80

Levels of Serializability

 Conflict Serializability
* Most DBMS try to support this.

* View Serializability
* No DBMS can do this!

How to determine the Level of Serializability?

How to determine the level of serializability?

* Dependency Graph!

* How can you create a dependency graph?

Dependency Graphs

* Help to determine the level of serializability among other things.
* How can you create a dependency graph?
* One node per transaction.

* Add an edge from transaction Ti to transaction Tj if you the following are met:
* An operation Oi of Ti conflicts with an operation Oj of Tj.
* O1 appears earlier in the schedule than Oj.

 Also known as precedence graph.

Time

Dependency Graphs Example I

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

@ ®@

Time

Dependency Graphs Example I

T1: T2:

Begin

read(A)

write(A)
Begin
read(A)
write(A)

read(B)

write(B)

End
read(B)
write(B)
End

v

W-R and W-W Conflicts

o
@ ®@

T2 depends on T1

86

Time

Dependency Graphs Example II

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)
read(B)
write(B)
End

@ ®@

Time

v

Dependency Graphs Example II

T1: T2:
Begin

read(A)

write(A)

\ Begin
read(A)
write(A)
read(B)
write(B)
End

read(B)
write(B)
End

W-R and W-W Conflicts

/N

(@

@)

88

Time

Dependency Graphs Example II

T1: T2:

Begin

read(A)

write(A)
Begin
read(A)
write(A)
read(B)
write(B)
End

read(B)

write(B)

End

v

W-R and W-W Conflicts

/N

@ ®
N/

Conflict Cycle!

89

Conflict Serializability

Conflict Serializability

* Two schedules are conflict equivalent if and only if:
* They involve the same actions of the same transactions.
* Every pair of conflicting actions is ordered the same way.

* A schedule S is conflict serializable if S is conflict equivalent to some serial
schedule.

* You can transform a conflict serializable schedule S into a serial schedule by
swapping consecutive non-conflicting operations of different transactions.

* A schedule is conflict serializable iff its dependency graph is acyclic.

Time

Conflict Serializability: Example I

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

® ®

Is this conflict serializable?

92

Time

Conflict Serializability: Example I

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)

read(B)
write(B)
End

® ®

Is this conflict serializable?

Yes!

93

Time

Conflict Serializability: Example II

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)
read(B)
write(B)
End

/N

@ ®
N/

Is this conflict serializable?

94

Time

Conflict Serializability: Example II

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(A)
write(A)
read(B)
write(B)
End

/N

@ ®
N/

Is this conflict serializable?

No!

Time

Conflict Serializability: Example II1

T1:

Begin
read(A)
write(A)

read(B)
write(B)
End

T2:

Begin
read(B)
write(B)
End

T3:

Begin
read(A)
write(A)
End

@ ®@
©

Is this conflict serializable?

Conflict Serializability: Example II1

T1: T2: T3:

Begin @ ®

read(A)
write(A) \
Begin
Time \ read(A) @
write(A)

Begin End

read(B)

g;ge(B) Is this conflict serializable?
read(B)
write(B)

v End

97

Time

T1: T2: T3:
Begin

read(A)

write(A)

\ Begin
read(A)
write(A)

Begin End
read(B)
write(B)
End
read(B)
write(B)

End

Conflict Serializability: Example II1

N
& ®
@

Is this conflict serializable?

98

Conflict Serializability: Example II1

T1: T2: T3: l/—_\
Begin @ @

read(A)
write(A) \
Begin
Time \ read(A) @
write(A)

Begin End
read(B)
write(B) Is this conflict serializable?
)% End
d(B . . .
f;?jte((];) Is this equivalent to a serial schedule?
v End

Yes! {T2, T1, T3}
T2 should execute before T3! %

Conflict Serializability: Example IV

T1: T2:
Begin @ @
read(A)
write(A) Begin
read(A)
Time read(B)
End
read(B)
write(B)
End Is this conflict serializable?

Conflict Serializability: Example IV

T1: T2: /—\
Begin @ @
ff\ef?i(’;le(l(ﬁ) — Begin v

read(A)
Time read(B)
End
read(B)
write(B)
End

Is this conflict serializable?

No!

101

Determining Serializability Order from
Dependence Graph

Determining Serializability Order from
Dependence Graph

* Dependence graph only dictates the dependency between the transactions.
* To find the serializability order of these transactions, you run topological sort.

* Can there be multiple possible serializability orders?

Determining Serializability Order from
Dependence Graph

* Dependence graph only dictates the dependency between the transactions.
* To find the serializability order of these transactions, you run topological sort.

 Can there be multiple possible serializability orders?
* Yes!
* Not every pair of transactions are dependent on each other.

Determining Serializability Order from
Dependence Graph

YR
& ®
@

Serializability order: {T2, T1, T3}

Determining Serializability Order from
Dependence Graph

/@\

()
\@/

Serializability order?

Determining Serializability Order from
Dependence Graph

@)
/TN
@\ /
®)

Serializability orders: {12, T1, T4, T3} or
{12, T4, T1, T3}

View Serializability

View Serializability

* View Serializability essentially states that if the output of a schedule matches the
expectation, then the schedule is view serializable even if it is not conflict
serializable.

* Formal Definition: Schedules S1 and S2 are view equivalent if
* T1 reads initial value of A in S1, then T1 also reads initial value of A in S2.

* T1 reads value of A written by T2 in S1, then T1 also reads value of A written by
T21in S2.

e T1 writes final value of A in S1, then T1 also writes final value of A in S2 .

View Serializability

* View Serializability essentially states that if the output of a schedule matches the
expectation, then the schedule is view serializable even if it is not conflict
serializable.

* Formal Definition: Schedules S1 and S2 are view equivalent if
* T1 reads initial value of A in S1, then T1 also reads initial value of A in S2.

* T1 reads value of A written by T2 in S1, then T1 also reads value of A written by
T21in S2.

e T1 writes final value of A in S1, then T1 also writes final value of A in S2 .

* View Serializability supports more schedules than Conflict Serializability.

Time

T1:

Begin
read(A)

write(A)
End

View Serializability

T2: T3:

Begin

write(A)

End
Begin
write(A)
End

Blind Writes as writes take
place without reading.

(@

©

@)

Time

View Serializability

T1: T2: T3:
Begin
read(A)
\ Begin
write(A)
End
Begin
write(A)
End
write(A)

End

112

Time

View Serializability

T1: T2: T3:
Begin
read(A)
\ Begin
write(A)
End
Begin
write(A)
End
write(A)

End

113

Time

View Serializability

T1: T2: T3:
Begin
read(A)
\ Begin
write(A)
/ End
Begin
write(A)
End
write(A)

End

114

Time

View Serializability

T1: T2: T3:
Begin
read(A)

\ Begin

write(A)
/ End
Begin

write(A)

End \
write(A)

End

115

Time

View Serializability

T1: T2: T3:
Begin
read(A)
\ Begin
write(A)

End

Begin
write(A)
End \
write(A)
End

Is this conflict serializable?

No!

116

Time

View Serializability

T1: T2: T3:
Begin
read(A)
\ Begin
write(A)

End

Begin
write(A)
End \
write(A)
End

Is this view serializable?

117

Time

View Serializability

T1:

Begin
read(A)

write(A)
End

T2:

Begin
write(A)
End

T3: T1:
Begin
read(A)

View Ev;ﬁce(A)
Equivalent
: Schedules

Begin

write(A)

End

T2:

Begin
write(A)
End

T3:

Begin
write(A)
End

Is this view serializable? Yes!

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 2 is Out! Deadline: Nov 13, 2025 at 11:59pm Assignment 3 will be released on Nov 13, 2025!
	Slide 3: Transactions
	Slide 4: How to define a Transaction?
	Slide 5: How to define a Transaction?
	Slide 6: How to define a Transaction?
	Slide 7: How to define a Transaction?
	Slide 8: Definitions and Notations
	Slide 9: ACID Properties for a Transaction
	Slide 10: ACID Properties for a Transaction
	Slide 11: ACID Properties for a Transaction
	Slide 12: ACID Properties for a Transaction
	Slide 13: ACID Properties for a Transaction
	Slide 14: ACID Properties for a Transaction
	Slide 15: ACID Properties for a Transaction
	Slide 16: ACID Properties for a Transaction
	Slide 17: Two Concurrent Transactions
	Slide 18: Atomicity
	Slide 19: Atomicity
	Slide 20: Atomicity
	Slide 21: Atomicity
	Slide 22: Atomicity
	Slide 23: Atomicity
	Slide 24: Atomicity
	Slide 25: Atomicity Support: Logging
	Slide 26: Atomicity Support: Logging
	Slide 27: Atomicity Support: Shadow Paging
	Slide 28: Atomicity Support: Shadow Paging
	Slide 29: Consistency
	Slide 30: Isolation
	Slide 31: Isolation
	Slide 32: Isolation
	Slide 33: Concurrent Transactions
	Slide 34: Concurrent Transactions
	Slide 35: Concurrent Transactions
	Slide 36: Concurrent Transactions
	Slide 37: Serial Execution
	Slide 38: Serial Execution
	Slide 39: Serial Execution
	Slide 40: Schedule
	Slide 41: Another Interleaving (I)
	Slide 42: Another Interleaving (I)
	Slide 43: Another Interleaving (II)
	Slide 44: Another Interleaving (II)
	Slide 45: Conflicting Transactions
	Slide 46: Conflicting Transactions
	Slide 47: Read-Write Conflict
	Slide 48: Read-Write Conflict
	Slide 49: Read-Write Conflict
	Slide 50: Read-Write Conflict
	Slide 51: Read-Write Conflict
	Slide 52: Read-Write Conflict
	Slide 53: Write-Read Conflict
	Slide 54: Write-Read Conflict
	Slide 55: Write-Read Conflict
	Slide 56: Write-Read Conflict
	Slide 57: Write-Read Conflict
	Slide 58: Write-Read Conflict
	Slide 59: Write-Read Conflict
	Slide 60: Write-Write Conflict
	Slide 61: Write-Write Conflict
	Slide 62: Write-Write Conflict
	Slide 63: Write-Write Conflict
	Slide 64: Write-Write Conflict
	Slide 65: Write-Write Conflict
	Slide 66: Write-Write Conflict
	Slide 67: Write-Write Conflict
	Slide 68: Write-Write Conflict
	Slide 69: Isolation Support: Concurrency Control
	Slide 70: Isolation Support: Concurrency Control
	Slide 71: Isolation Support: Concurrency Control
	Slide 72: Isolation Support: Concurrency Control
	Slide 73: Serializable Schedules
	Slide 74: Serializable Schedules
	Slide 75: Serializable Schedules
	Slide 76: Isolation Levels vs. Consistency Levels
	Slide 77: Isolation Levels vs. Consistency Levels
	Slide 78: Isolation Levels vs. Consistency Levels
	Slide 79: Isolation Levels vs. Consistency Levels
	Slide 80: Serializable Isolation Level
	Slide 81: Levels of Serializability
	Slide 82: How to determine the Level of Serializability?
	Slide 83: How to determine the level of serializability?
	Slide 84: Dependency Graphs
	Slide 85: Dependency Graphs Example I
	Slide 86: Dependency Graphs Example I
	Slide 87: Dependency Graphs Example II
	Slide 88: Dependency Graphs Example II
	Slide 89: Dependency Graphs Example II
	Slide 90: Conflict Serializability
	Slide 91: Conflict Serializability
	Slide 92: Conflict Serializability: Example I
	Slide 93: Conflict Serializability: Example I
	Slide 94: Conflict Serializability: Example II
	Slide 95: Conflict Serializability: Example II
	Slide 96: Conflict Serializability: Example III
	Slide 97: Conflict Serializability: Example III
	Slide 98: Conflict Serializability: Example III
	Slide 99: Conflict Serializability: Example III
	Slide 100: Conflict Serializability: Example IV
	Slide 101: Conflict Serializability: Example IV
	Slide 102: Determining Serializability Order from Dependence Graph
	Slide 103
	Slide 104: Determining Serializability Order from Dependence Graph
	Slide 105: Determining Serializability Order from Dependence Graph
	Slide 106: Determining Serializability Order from Dependence Graph
	Slide 107: Determining Serializability Order from Dependence Graph
	Slide 108: View Serializability
	Slide 109: View Serializability
	Slide 110: View Serializability
	Slide 111: View Serializability
	Slide 112: View Serializability
	Slide 113: View Serializability
	Slide 114: View Serializability
	Slide 115: View Serializability
	Slide 116: View Serializability
	Slide 117: View Serializability
	Slide 118: View Serializability

