Database Processing

CS 451 /551

Lecture 12:
Two-Phase Locking

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 3 1s Out!
Deadline: Nov 30, 2025 at 11:59pm

Final Exam: Dec 8, 2025 at 8-10am

How to Guarantee Serializability?

* If we know the full schedule (all the transactions that are part of the schedule) ahead
of time, we can try to create a serializable schedule.

 Unfortunately, this is not a practical expectation.

* How to guarantee serializability?

Locks

 Use Locks to restrict access to database records.

* Lock Manager = Stores and grants access to Locks.

Locks

 Use Locks to restrict access to database records.

* Lock Manager = Stores and grants access to Locks.

Type

Granularity

Shared Lock = A shared lock on a data-item D permits concurrent
access to the data-item D by multiple transactions. Good for Reads!

Exclusive Lock = An exclusive lock on a data-item D disallows
concurrent access to the data-item D by multiple transactions (only
one transaction at a time). Good for Writes!

Granularity defines the level at which a transaction acquires a lock.
For example: a lock can be acquired for a full transaction or before
access to a specific data-item.

Lock Compatibility Matrix

If a transaction Ti holds a S-Lock/X-Lock can another
transaction acquire a S-Lock/X-Lock.

Shared Lock (S-Lock) Exclusive Lock (X-Lock)

Shared Lock (S-Lock)

Exclusive Lock (X-Lock)

v X
X X

Transaction Lock Phases

* First, each transaction determines the type of lock (S-Lock or X-Lock) it wants.

Transaction Lock Phases

* First, each transaction determines the type of lock (S-Lock or X-Lock) it wants.

* Next, it requests the specific type lock for a data-item from Lock Manager.

Transaction Lock Phases

* First, each transaction determines the type of lock (S-Lock or X-Lock) it wants.
* Next, it requests the specific type lock for a data-item from Lock Manager.

* Two Possible Cases:
* Transaction gets the requested lock for the data-item

* Request Denied

Transaction Lock Phases

* First, each transaction determines the type of lock (S-Lock or X-Lock) it wants.
* Next, it requests the specific type lock for a data-item from Lock Manager.

* Two Possible Cases:
* Transaction gets the requested lock for the data-item
* Locks the data-item.
* Completes the desired task.
* Unlocks the data-item and releases the lock back to Lock Manager.

* Request Denied

10

Time

T1:

Begin
read(A)
write(A)
read(A)
End

Locking Example I

T2:

Begin
read(A)
write(A)
End

Lock Manager

Time

Locking Example I

T1: T2:
Begin
X-LOCk(A) < >
read(A)
write(A)
read(A)
End
Begin
read(A)
write(A)

End

Lock Manager

Granted T1 2 A

12

Time

Locking Example I

T1: T2:
Begin
X-LOCk(A) < >
read(A)
write(A)
read(A)
Unlock(A) >
End
Begin
read(A)
write(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

13

Time

Locking Example I

T1: T2:

Begin

X-LOCk(A) <

read(A)

write(A)

read(A)

Unlock(A)

End
Begin
X-Lock(A) =
read(A)
write(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

Granted T2 2 A

14

Time

Locking Example I

T1: T2:

Begin

X-LOCk(A) <

read(A)

write(A)

read(A)

Unlock(A)

End
Begin
X-Lock(A) =
read(A)
write(A)
Unlock(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

Granted T2 2 A

Released T2 2 A

15

Time

T1:

Begin
read(A)
write(A)

read(A)
End

Locking Example II

T2:

Begin
read(A)
write(A)
End

Lock Manager

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)

read(A)
End

Locking Example II

T2:

Begin
read(A)
write(A)
End

Lock Manager

Granted T1 2 A

17

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)

read(A)
End

Locking Example II

T2:

Begin
read(A)
write(A)
End

Lock Manager

Granted T1 2 A

Released T1 =2 A

18

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)

read(A)
End

Locking Example II

T2:

Begin
X-Lock(A)
read(A)
write(A)
End

Lock Manager

Granted T1 2 A

Released T1 =2 A

Granted T2 2 A

19

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)

read(A)
End

Locking Example II

T2:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)
End

Lock Manager

Granted T1 2 A

Released T1 =2 A

Granted T2 2 A

Released T2 2 A

20

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)

S-Lock(A)
read(A)
End

Locking Example II

T2:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)
End

Lock Manager

Granted T1 2 A

Released T1 =2 A

Granted T2 2 A

Released T2 2 A

Granted T1 2 A

21

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)

S-Lock(A)
read(A)
Unlock(A)
End

Locking Example II

T2:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)
End

Lock Manager

Granted T1 2 A

Released T1 =2 A

Granted T2 2 A

Released T2 2 A
Granted T1 2 A

Released T1 2 A

22

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)

S-Lock(A)
read(A)
Unlock(A)
End

Locking Example II

T2:

Begin
X-Lock(A)
read(A)
write(A)
Unlock(A)
End

Lock Manager

Granted T1 2 A

Released T1 =2 A

Granted T2 2 A

Released T2 2 A
Granted T1 2 A

Released T1 2 A

Is this serializable?

Did locking help?

23

Locking Example II

T1: T2: Lock Manager

Begin

X-Lock(A) Granted T1 2 A

read(A) Is this serializable?

write(A)

Time Unlock(A) Released T1 =2 A

Begin Did locking help?
X-Lock(A) Granted T2 2 A
read(A) No!
write(A)
Unlock(A) Released T2 2 A
End

S-Lock(A) Granted T1 2 A

| read(A)
Unlock(A) Released T1 2 A

End 24

Concurrency Control protocol:
Two-Phase Locking

Two-Phase Locking

* Two-phase locking (2PL) protocol determines whether a transaction can access an
object in the database at runtime.

* The 2PL protocol does not need to know all the queries that a transaction will
execute ahead of time.

Two-Phase Locking

* Two phases of 2PL.

* Growing Phase:
* Each transaction requests the locks that it needs from the Lock manager.
* The lock manager grants/denies lock requests.

* Shrinking Phase:

* A transaction is allowed to only release/downgrade locks that it previously
acquired.

* It cannot acquire new locks.
* A transaction attempting to acquire a lock after releasing any lock is a violation!

27

Time

T1:

Begin
read(A)
write(A)
read(A)
End

T2:

Begin
read(A)
write(A)
End

2PL Example I

Lock Manager

28

Time

2PL Example I

T1: T2:
Begin
X-LOCk(A) < >
read(A)
write(A)
read(A)
End
Begin
read(A)
write(A)

End

Lock Manager

Granted T1 2 A

Growing phase
starts for T1

29

Time

2PL Example I

T1: T2:
Begin
X-LOCk(A) < >
read(A)
write(A)
read(A)
Unlock(A) >
End
Begin
read(A)
write(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

Growing phase
ends and
shrinking phase
starts for T1.

30

Time

2PL Example I

T1: T2:

Begin

X-LOCk(A) <

read(A)

write(A)

read(A)

Unlock(A)

End
Begin
X-Lock(A) =
read(A)
write(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

Granted T2 2 A

Growing phase

starts for T2.

31

Time

2PL Example I

T1: T2:

Begin

X-LOCk(A) <

read(A)

write(A)

read(A)

Unlock(A)

End
Begin
X-Lock(A) =
read(A)
write(A)
Unlock(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

Granted T2 2 A

Released T2 2 A

Growing phase

ends and

shrinking phase

starts for T2.

32

Time

2PL Example I

T1: T2:

Begin

X-Lock(A) <

read(A)

write(A)

read(A)

Unlock(A)

End
Begin
X-Lock(A) =
read(A)
write(A)
Unlock(A)

End

Lock Manager

Granted T1 2 A

Released T1 2 A

Granted T2 2 A

Released T2 2 A

Thus, this schedule
follows 2PL.

Hence, serializable.

33

Time

T1:

Begin
read(A)
write(A)

read(A)
End

2PL Example II

T2:

Begin
read(A)
write(A)
End

Lock Manager

Let’s try to force 2PL
on this schedule.

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)

read(A)
End

2PL Example II

T2:

Begin
read(A)
write(A)
End

Lock Manager

Granted T1 2 A

Growing phase
starts for T1

35

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)

read(A)
End

2PL Example II

T2:

Begin
X-Lock(A)

|

|

v
read(A)

write(A)
End

Lock Manager

Granted T1 2 A

Request denied

Growing phase
starts for T1

36

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)

read(A)
Unlock(A)
End

2PL Example II

T2: Lock Manager

Granted T1 2 A

Begin
X-Lock(A) Request denied
|
|
E Released T1 2 A
'
read(A)
write(A)

End

Shrinking phase

starts for T1

37

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)

read(A)
Unlock(A)
End

2PL Example II

T2:

Begin
X-Lock(A)

\
X-Lock(A)
read(A)
write(A)
End

Lock Manager

Granted T1 2 A

Request denied T2

Released T1 =2 A

Granted T2 2 A

Growing phase
starts for T2

38

Time

T1:

Begin
X-Lock(A)
read(A)
write(A)

read(A)
Unlock(A)
End

2PL Example II

T2:

Begin
X-Lock(A)

\
X-Lock(A)
read(A)
write(A)
Unlock(A)
End

Lock Manager

Granted T1 2 A

Request denied T2

Released T1 =2 A

Granted T2 2 A

Released T2 2 A

Shrinking phase
starts for T2

39

Two-Phase Locking

* 2PL can guarantee conflict serializability because it produces schedules whose
dependency graphs are acyclic.

* But, what are the major challenges with 2PL?

Two-Phase Locking

* 2PL can guarantee conflict serializability because it produces schedules whose
dependency graphs are acyclic.

* But, what are the major challenges with 2PL?

* Cascade aborts = Aborting one transaction causes aborting all dependent
transactions.

* Deadlocks 2 Two transactions waiting on resources held by each other.

Strong Strict Two-Phase Locking

Prevents Cascade Aborts

Strong Strict Two-Phase Locking

* A transaction is only allowed to release locks after it has ended (i.e., committed or
aborted).

e Stricter than standard 2PL.
 Smaller subset of schedules than standard 2PL allowed.

* Advantages:
* No cascade aborts.
 Aborted transactions can simply be undone!

Example

* Assume, the following two transactions, and initially A =B =1000.

T1: T2:

Begin Begin
A=A-100; Print A+ B
B=B +100; Commit

Commit

Time

Non 2PL

T1:

Begin
X-Lock(A)
read(A)
A=A-100
write(A)
Unlock(A)

X-Llock(B)

v
read(B)
B=B-100
write(B)
Unlock(B)
End

T2:
Begin

S-Lock(A)

reati(A)
Unlock(A)
S-Lock(B)
read(B)
Unlock(B)
Print A+B
Commit

This is a serializable
schedule but non-2PL!

45

Time

2PL

T1:

Begin
X-Lock(A)
read(A)
A=A-100
write(A)
X-Lock(B)
Unlock(A)
read(B)
B=B-100
write(B)
Unlock(B)
End

T2:
Begin

S-Lock(A)

\/
read(A)
S-Lock(B)

reati(B)
Unlock(A)
Unlock(B)
Print A+B
Commit

This is a 2PL schedule
and it is conflict
serializable!

46

Strong Strict 2PL

T1: T2:
Begin Begin
X-Lock(A)
read(A) S-Lock(A)
A=A-100 i
;V_rifc(ﬁ)]g) i This is a Strong St.rict
. read(B) : 2PL schedule and it
Time | g-p_100 i will not suffer cascade
write(B) v aborts!
Unlock(A) read(A)
Unlock(B) S-Lock(B)
End read(B)
Print A+B
Unlock(A)
Unlock(B)

v Commit

Strong Strict 2PL

ﬁll Schedules

/ View Serializable \

/ Conflict Serializable \
4)

Strong Strict 2PL
()

No Cascading
Aborts

Serial]

_

N\ 2y

Deadlocks in 2PL

Example

* Assume, the following two concurrent transactions.

T1: T2:

Begin Begin
A=A-100; Print B+A
B=B +100; Commit

Commit

Deadlock Example

T1: T2:
Begin Begin
X-Lock(A)

Time

51

Deadlock Example

T1: T2:
Begin Begin
X-Lock(A)

S-Lock(B)

Time

52

Deadlock Example

Time

T1:

Begin
X-Lock(A)

read(A)
A=A-100
write(A)

T2:
Begin
S-Lock(B)

read(B)
S-Lock(A)

I
I
I
I
I

\/

T2 needs a lock on A.

53

Deadlock Example

TT: T2:
Begin Begin
X-Lock(A)
S-Lock(B)
read(A) T1 needs a lock on B.
. A=A-100 read(B)
Time | yrite(A) S-Lock(A)
X-L(I)ck(B) i
i i
! \/
\/

Both T2 and T1 are waiting for each other to

release lock on other items. -

Deadlock Management

* There are two ways to manage deadlocks:
 Deadlock Detection 2> When deadlock occurs, detect and solve.

* Deadlock Prevention = Prevent deadlock from occurring in the first place.

Deadlock Detection

Deadlock Detection

* Create a waits-for graph.

* Waits-for graph keep track of what locks each transaction is waiting to
acquire.

Deadlock Detection

* Create a waits-for graph.

* Waits-for graph keep track of what locks each transaction is waiting to
acquire.

* In the wait-for graph:
* Nodes are transactions
* Add an Edge from transaction Ti to Tj if Ti is waiting for Tj to release a lock.

 The system periodically checks for cycles in waits- for graph and then decides how to
break it.

Time

T1:

Begin
S-Lock(A)

S-Lock(B)

Deadlock Detection

T2: T3:
Begin Begin
X-Lock(B)

S-Lock(C)
X-Lock(C)

X-Lock(A)

Three transactions
and three data-items

Time

T1:

Begin
S-Lock(A)

S-Lock(B) -~

Deadlock Detection

T2:
Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

60

Time

T1:

Begin
S-Lock(A)

S-Lock(B) -~

Deadlock Detection

T2: T3:
Begin Begin
X-Lock(B)
Rl S-Lock(C)
7’ 4

’ ’

7’
,/

’

X-Lock(C) »*
X-Lock(A)

61

Time

Deadlock Detection

T1: T2: T3:
Begin Begin Begin
S-Lock(A)
sso. X-Lock(B)
TN, S-Lock(C)
R ~ae ,,'
S-Lock(B) - e

X-Lock(C) «* ~~~_
X-Lock(A)

62

Deadlock Handling

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 3 is Out! Deadline: Nov 30, 2025 at 11:59pm Final Exam: Dec 8, 2025 at 8-10am
	Slide 3: How to Guarantee Serializability?
	Slide 4: Locks
	Slide 5: Locks
	Slide 6: Lock Compatibility Matrix
	Slide 7: Transaction Lock Phases
	Slide 8: Transaction Lock Phases
	Slide 9: Transaction Lock Phases
	Slide 10: Transaction Lock Phases
	Slide 11: Locking Example I
	Slide 12: Locking Example I
	Slide 13: Locking Example I
	Slide 14: Locking Example I
	Slide 15: Locking Example I
	Slide 16: Locking Example II
	Slide 17: Locking Example II
	Slide 18: Locking Example II
	Slide 19: Locking Example II
	Slide 20: Locking Example II
	Slide 21: Locking Example II
	Slide 22: Locking Example II
	Slide 23: Locking Example II
	Slide 24: Locking Example II
	Slide 25: Concurrency Control protocol: Two-Phase Locking
	Slide 26: Two-Phase Locking
	Slide 27: Two-Phase Locking
	Slide 28: 2PL Example I
	Slide 29: 2PL Example I
	Slide 30: 2PL Example I
	Slide 31: 2PL Example I
	Slide 32: 2PL Example I
	Slide 33: 2PL Example I
	Slide 34: 2PL Example II
	Slide 35: 2PL Example II
	Slide 36: 2PL Example II
	Slide 37: 2PL Example II
	Slide 38: 2PL Example II
	Slide 39: 2PL Example II
	Slide 40: Two-Phase Locking
	Slide 41: Two-Phase Locking
	Slide 42: Strong Strict Two-Phase Locking
	Slide 43: Strong Strict Two-Phase Locking
	Slide 44: Example
	Slide 45: Non 2PL
	Slide 46: 2PL
	Slide 47: Strong Strict 2PL
	Slide 48: Strong Strict 2PL
	Slide 49: Deadlocks in 2PL
	Slide 50: Example
	Slide 51: Deadlock Example
	Slide 52: Deadlock Example
	Slide 53: Deadlock Example
	Slide 54: Deadlock Example
	Slide 55: Deadlock Management
	Slide 56: Deadlock Detection
	Slide 57: Deadlock Detection
	Slide 58: Deadlock Detection
	Slide 59: Deadlock Detection
	Slide 60: Deadlock Detection
	Slide 61: Deadlock Detection
	Slide 62: Deadlock Detection
	Slide 63: Deadlock Handling

