
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 13:

Two-Phase Locking and

Time-Stamp Ordering

Assignment 3 is Out!
Deadline: Nov 30, 2025 at 11:59pm

Final Exam: Dec 8, 2025 at 8-10am

Syllabus → Focus on course not covered in either
Quiz but you should remember indexing and storage.

2

Presentation

3

• Time slots to be released today around 11am PST.

• Each group gets a 15min time slot.

• 8 minutes to present + 7 minutes for Q/A

• If 4 group members → 2 min for each member.

• Don’t present your code.

• Present your idea.

• How did you design?

• Why did you select such a design?

• Is there anything cool about your design.

• How did each member contribute?

Last Class

4

• We discussed possibility of deadlocks in 2PL.

• There are two ways to manage deadlocks:

• Deadlock Detection → When deadlock occurs, detect and solve.

• Deadlock Prevention → Prevent deadlock from occurring in the first place.

Deadlock Detection

5

• Create a waits-for graph.

• Waits-for graph keep track of what locks each transaction is waiting to
acquire.

• In the wait-for graph:
• Nodes are transactions

• Add an Edge from transaction Ti to Tj if Ti is waiting for Tj to release a lock.

• The system periodically checks for cycles in waits- for graph and then decides how to
break it.

Deadlock Detection

6

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

Three transactions
and three data-items

Deadlock Detection

7

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 T2

T3

Deadlock Detection

8

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 T2

T3

Deadlock Detection

9

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 T2

T3

Deadlock Handling

10

• When the DBMS detects a deadlock, it will select a victim.

• The victim transaction is rollbacked to break the cycle.

• The victim transaction is either restarted in the future or aborted.

• Performance trade-off between the frequency of checking for deadlocks
and the time transactions wait before deadlocks are broken.

Deadlock Handling: Victim Selection

11

• Selecting a victim depends on several factors:

• Age (lowest timestamp).

• Progress (least/most queries executed)

• The number of items already locked.

• The number of transactions that need to be rollbacked along with it.

• Note: if your DBMS plans to restart the rollbacked transaction, do take into
account starvation.

• The number of times a transactions has been restarted in the past.

Deadlock Prevention

12

Deadlock Prevention

13

• If a transaction tries to acquire a lock that is held by another transaction,
kill one of them to prevent a deadlock.

• No need for a waits-for graph or detection algorithm.

Deadlock Prevention

14

• So how to achieve deadlock prevention?

Deadlock Prevention

15

• So how to achieve deadlock prevention?

• Assign a timestamp (time of arrival in the system) to each transaction.

• Prioritize transactions based on the value of timestamps.

• For example: Higher timestamp, lower the priority.

Deadlock Prevention

16

• So how to achieve deadlock prevention?

• Assign a timestamp (time of arrival in the system) to each transaction.

• Prioritize transactions based on the value of timestamps.

• For example: Higher timestamp, lower the priority

• Two Designs:

• Wait-Die

• Wound-Wait

Deadlock Prevention: Wait-Die

17

• Old Waits for Young

• If requesting transaction has higher priority than holding transaction, then
requesting transaction waits for holding transaction.

• Otherwise requesting transaction aborts.

Deadlock Prevention: Wait-Die

18

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

Three transactions
and three data-items

Deadlock Prevention: Wait-Die

19

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 waits!

Deadlock Prevention: Wait-Die

20

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T2 waits!

Deadlock Prevention: Wait-Die

21

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T3 aborts, which
allows T2 to finish
and thus T1!

Deadlock Prevention: Wound-Wait

22

• Young Waits for Old

• If requesting transaction has higher priority than holding transaction, then
holding transaction aborts and releases lock.

• Otherwise requesting transaction waits.

Deadlock Prevention: Wound-Wait

23

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

Three transactions
and three data-items

Deadlock Prevention: Wound-Wait

24

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 needs a lock held by
T2, so we abort T2.

This allows T1 to finish
and release locks later.

Deadlock Prevention: Wound-Wait

25

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T3 waits for T1 as
young waits for old.

Deadlock Prevention

26

• Why do these schemes guarantee no deadlocks?

Deadlock Prevention

27

• Why do these schemes guarantee no deadlocks?

• Ensure that waiting for locks occur in only one.

• When a transaction restarts, what is its priority?

Deadlock Prevention

28

• Why do these schemes guarantee no deadlocks?

• Ensure that waiting for locks occur in only one.

• When a transaction restarts, what is its priority?

• Its original timestamp to prevent the transaction from starving.

Lock Granularities

29

• What is the right granularity of acquiring a lock?

Lock Granularities

30

• What is the right granularity of acquiring a lock?

• The DBMS needs to decide the lock granularity: page, tuple, or attribute?

• Finer the lock granularity, better the performance and harder to guarantee
code correctness.

• Finer the lock granularity, frequent the need to request/acquire locks.

Lock Granularities

31

Database Slightly Rare

Very CommonTable 1 Table 2 Table 3

Page 1 Page 2 Page n

Tuple 1 Tuple 2 Tuple n

Attr 1 Attr 2 Attr 3

Common

Very Common

Rare

Lock Granularities

32

Say a transaction T1 has locked some attribute in Table 2/ Page 1 and another
transaction T2 wants to lock the full database, how to check if T2’s request
can / cannot be satisfied?

Intention Locks

33

• An intention lock allows locking a higher-level node in shared or exclusive
mode without checking all the descendent nodes.

• If a node is locked in an intention mode, then some transaction has
acquired a lock at the lower level in the tree.

Intention Locks

34

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S-Locks.

• Intent to get S-Lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X-Locks.

• Intent to get X-Lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode and at a
further lower level explicit locking with X-Locks.

Lock Compatibility Matrix

35

IS IX S SIX X

IS

IX

S

SIX

X

If a transaction Ti holds a lock, can another transaction Tj acquire a lock.

Ti Holds

Tj Wants

Locking Protocol

36

• A transaction tries to fetch an appropriate lock at highest level of the
database hierarchy.

• To get S or IS lock on a node, the transaction must have at least IS lock on
the parent node.

• To get X, IX, or SIX on a node, the transaction must have at least IX lock on
the parent node.

Example 1

37

• T1 → Read a CS employee Kang’s salary.

• T2 → Increase a History employee Anakin’s salary by $100.

• How can we acquire locks in this example?

Example 1

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

IST1

ST1

Example 1

T2 starts locking and IS and IX are compatible

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

ST1

IXT2

IST1

Example 1

T2 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

ST1

IXT2

IXT2

IXT2

XT2

IST1

Example 2

45

• T1 → Read all CS employees salary and increase Kang’s salary by $100.

• T2 → Read salary of CS employee Thanos.

• T3 → Read all CS employees salary .

• How can we acquire locks in this example?

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T1 starts locking

SIXT1

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T1 starts locking

SIXT1

SIXT1

SIXT1

XT1

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T2 starts locking

SIXT1

SIXT1

SIXT1

XT1

IST2

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T2 starts locking

SIXT1

SIXT1

SIXT1

XT1

IST2

IST2

IST2

ST2

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T3 starts locking

SIXT1

SIXT1

SIXT1

XT1

IST2

IST2

IST2

ST2

ST3

Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T3 is not allowed to lock until T1 finishes because T3 wants to read something which has
SIX intention!

SIXT1

SIXT1

SIXT1

XT1

IST2

IST2

IST2

ST2

ST3

Lock Escalation

53

• The DBMS automatically switches to coarser-grained locks when a
transaction acquires too many finer-grained locks.

• Reduces the number of requests that the lock manager needs to process.

Discussion

54

• 2PL forces transactions to acquire locks!

• Strong Strict 2PL forces transactions to acquire locks early to prevent
cascade aborts!

• These protocols take a pessimistic approach and assume that conflicts are
common and transactions access a lot of data items!

• Can we do better?

Timestamp Ordering Concurrency Control

55

56

• An optimistic concurrency control protocol.

• Assumption:

• Conflicts between transactions are rare.

• Transactions are short-lived.

• Optimized for the no-conflict cases.

Timestamp Ordering Concurrency Control

57

• Each transaction Ti is assigned a unique monotonically increasing timestamp.

• Let TS(Ti) be the timestamp allocated to transaction Ti.

• When to assign the timestamp → Depends on the design.

• How to generate a timestamp?

Assigning Timestamps

58

• Each transaction Ti is assigned a unique monotonically increasing timestamp.

• Let TS(Ti) be the timestamp allocated to transaction Ti.

• When to assign the timestamp → Depends on the design.

• How to generate a timestamp?
• Wall clock time / System time

• Logical counter

• Hybrid

Assigning Timestamps

59

• Timestamps are used to determine the serializability order of transactions.

• For two transactions Ti and Tj, if TS(Ti) < TS(Tj), then

• The DBMS must ensure that the execution schedule for these transactions
is equivalent to the serial schedule where Ti appears before Tj .

• Each database object (e.g., tuple) need to track the timestamps of that last
accessed/modified them.

Timestamp Ordering Concurrency Control

60

• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

Optimistic Concurrency Control

61

• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

• Each object read is copied into workspace.

Optimistic Concurrency Control

62

• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

• Each object read is copied into workspace.

• Updates/Writes are applied to workspace.

Optimistic Concurrency Control

63

• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

• Each object read is copied into workspace.

• Updates/Writes are applied to workspace.

• When a transaction commits, the DBMS checks if the workspace writes
conflict with other transactions.

• If there are no conflicts, the workspace write set is copied to the database.

Optimistic Concurrency Control

64

• How does OCC work?

OCC Phases

65

• How does OCC work?

• Three Phases of OCC:

• Read Phase

• Validation Phase

• Write Phase

OCC Phases

66

• Track the read/write sets of each transaction and store the writes of each
transaction in a private workspace.

• DBMS copies every tuple that the transaction accesses from the database to its
private workspace.

Read Phase

67

• Assign the transaction a unique timestamp (TS) and then check whether it
conflicts with other transactions.

Validation Phase

68

• If validation is successful, set the write timestamp (W-TS) for all the modified
objects in private workspace to the validation timestamp.

• Next, update the value and timestamp in the database.

• Otherwise abort transaction.

Write Phase

69

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

70

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

T1 Workspace

71

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

72

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

T2 Workspace

73

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

74

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Timestamp for T2:
TS(T2) = 1

75

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Nothing written
so no change to
timestamp.

76

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

No update to
global database.

77

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Update in value.

78

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

79

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Timestamp for T1:
TS(T1) = 2

80

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 2

T1 Workspace

Write-Timestamp set
for data-item A.

81

OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 150 2

Database

Object Value W-TS

A 150 2

T1 Workspace

No conflicts so
updates written to
global database.

82

• Assign the transaction a unique timestamp (TS) and then check whether it
conflicts with other transactions.

• When transaction Ti invokes Commit, the DBMS checks if it conflicts with
other transactions.

• Simplest mechanism → Use serial validation.

• How can DBMS guarantee only serializable schedules are permitted?

Validation Phase

83

• Assign the transaction a unique timestamp (TS) and then check whether it
conflicts with other transactions.

• When transaction Ti invokes Commit, the DBMS checks if it conflicts with
other transactions.

• Simplest mechanism → Use serial validation.

• How can DBMS guarantee only serializable schedules are permitted?

• Forward Validation

• Backward Validation

Validation Phase

84

• At the time of commit, each transaction checks if it conflicts with other
concurrently ongoing transactions (yet to be committed).

• Each going to commit transaction (at the validation step), checks the
timestamps and read/write sets of other ongoing transactions.

• There are three specific cases to satisfy:

Forward Validation

85

• For two transactions T1 and T2, say T1 is at the validation step (T1 < T2)

• Check if T1 completes its Write phase before T2 begins its Read phase.

• No conflict as all T1 's actions happen before T2 ‘s.

• Essentially, serial ordering.

Forward Validation: Case I

86

Forward Validation: Case I

T1:

Begin
Read
read(A)
write(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

87

• For two transactions T1 and T2, say T1 is at the validation step (T1 < T2)

• Check if T1 completes its Write phase before T2 starts its Write phase.

• T1 does not modify to any object read by T2.

• WriteSet(T1) ⋂ ReadSet(T2) = 0

Forward Validation: Case II

88

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

89

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

T1 Workspace

90

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

91

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

92

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

T2 Workspace

93

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

94

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

T1 has to be aborted,
fails Case II condition.

95

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database
How about this example?

96

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

T1 Workspace

97

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

98

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

99

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

T2 Workspace

100

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

101

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Safe to commit and finish T2
as T2 completes before T1.

102

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Safe to commit and finish T1 as T2
has committed and it can be observed
as logically finishing before T1!

103

• For two transactions T1 and T2, say T1 is at the validation step (T1 < T2)

• Check if T1 completes its Read phase before T2 completes its Read phase.

• T1 should not modify any object read or written by T2.

• WriteSet(T1) ⋂ ReadSet(T2) = 0

• WriteSet(T1) ⋂ WriteSet(T2) = 0

Forward Validation: Case III

104

Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

105

Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

Object Value W-TS

A 100 0

T1 Workspace

106

Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

107

Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

B 200 0

T2 Workspace

108

Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 150 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

B 200 0

T2 Workspace

109

Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 150 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

B 200 0

A 150 0

T2 Workspace

110

Backward Validation

111

• At the time of commit, each transaction checks if it conflicts with other
already committed transactions (transactions which were concurrent and
have committed).

• Each going to commit transaction (at the validation step), checks the
timestamps and read/write sets of other committed transactions.

• There are three specific cases to satisfy:

Backward Validation

112

• Propagate the changes in the transaction’s private workspace (write set) to the
database.

• The idea is to make the transaction’s write-set visible to other transactions.

• Serial Commits: Use a global lock to limit a single transaction to be in the
Validation/Write phases at a time.

OCC: Write Phase

113

OCC Disadvantages

114

• There is an overhead of copying data to private workspace.
• More data to copy, more expensive!

• Validation/Write phase creates bottlenecks due to locking.

• Aborting a transaction is more expensive in OCC than in 2PL because it
occurs after a transaction has already executed.

OCC Disadvantages

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 3 is Out! Deadline: Nov 30, 2025 at 11:59pm Final Exam: Dec 8, 2025 at 8-10am Syllabus  Focus on course not covered in either Quiz but you should remember indexing and storage.
	Slide 3: Presentation
	Slide 4: Last Class
	Slide 5: Deadlock Detection
	Slide 6: Deadlock Detection
	Slide 7: Deadlock Detection
	Slide 8: Deadlock Detection
	Slide 9: Deadlock Detection
	Slide 10: Deadlock Handling
	Slide 11: Deadlock Handling: Victim Selection
	Slide 12: Deadlock Prevention
	Slide 13: Deadlock Prevention
	Slide 14: Deadlock Prevention
	Slide 15: Deadlock Prevention
	Slide 16: Deadlock Prevention
	Slide 17: Deadlock Prevention: Wait-Die
	Slide 18: Deadlock Prevention: Wait-Die
	Slide 19: Deadlock Prevention: Wait-Die
	Slide 20: Deadlock Prevention: Wait-Die
	Slide 21: Deadlock Prevention: Wait-Die
	Slide 22: Deadlock Prevention: Wound-Wait
	Slide 23: Deadlock Prevention: Wound-Wait
	Slide 24: Deadlock Prevention: Wound-Wait
	Slide 25: Deadlock Prevention: Wound-Wait
	Slide 26: Deadlock Prevention
	Slide 27: Deadlock Prevention
	Slide 28: Deadlock Prevention
	Slide 29: Lock Granularities
	Slide 30: Lock Granularities
	Slide 31: Lock Granularities
	Slide 32: Lock Granularities
	Slide 33: Intention Locks
	Slide 34: Intention Locks
	Slide 35: Lock Compatibility Matrix
	Slide 36: Locking Protocol
	Slide 37: Example 1
	Slide 38: Example 1
	Slide 39: Example 1
	Slide 40: Example 1
	Slide 41: Example 1
	Slide 42: Example 1
	Slide 43: Example 1
	Slide 44: Example 1
	Slide 45: Example 2
	Slide 46: Example 2
	Slide 47: Example 2
	Slide 48: Example 2
	Slide 49: Example 2
	Slide 50: Example 2
	Slide 51: Example 2
	Slide 52: Example 2
	Slide 53: Lock Escalation
	Slide 54: Discussion
	Slide 55: Timestamp Ordering Concurrency Control
	Slide 56: Timestamp Ordering Concurrency Control
	Slide 57: Assigning Timestamps
	Slide 58: Assigning Timestamps
	Slide 59: Timestamp Ordering Concurrency Control
	Slide 60: Optimistic Concurrency Control
	Slide 61: Optimistic Concurrency Control
	Slide 62: Optimistic Concurrency Control
	Slide 63: Optimistic Concurrency Control
	Slide 64: OCC Phases
	Slide 65: OCC Phases
	Slide 66: Read Phase
	Slide 67: Validation Phase
	Slide 68: Write Phase
	Slide 69: OCC Example I
	Slide 70: OCC Example I
	Slide 71: OCC Example I
	Slide 72: OCC Example I
	Slide 73: OCC Example I
	Slide 74: OCC Example I
	Slide 75: OCC Example I
	Slide 76: OCC Example I
	Slide 77: OCC Example I
	Slide 78: OCC Example I
	Slide 79: OCC Example I
	Slide 80: OCC Example I
	Slide 81: OCC Example I
	Slide 82: Validation Phase
	Slide 83: Validation Phase
	Slide 84: Forward Validation
	Slide 85: Forward Validation: Case I
	Slide 86: Forward Validation: Case I
	Slide 87: Forward Validation: Case II
	Slide 88: Forward Validation: Case II
	Slide 89: Forward Validation: Case II
	Slide 90: Forward Validation: Case II
	Slide 91: Forward Validation: Case II
	Slide 92: Forward Validation: Case II
	Slide 93: Forward Validation: Case II
	Slide 94: Forward Validation: Case II
	Slide 95: Forward Validation: Case II
	Slide 96: Forward Validation: Case II
	Slide 97: Forward Validation: Case II
	Slide 98: Forward Validation: Case II
	Slide 99: Forward Validation: Case II
	Slide 100: Forward Validation: Case II
	Slide 101: Forward Validation: Case II
	Slide 102: Forward Validation: Case II
	Slide 103: Forward Validation: Case III
	Slide 104: Forward Validation: Case III
	Slide 105: Forward Validation: Case III
	Slide 106: Forward Validation: Case III
	Slide 107: Forward Validation: Case III
	Slide 108: Forward Validation: Case III
	Slide 109: Forward Validation: Case III
	Slide 110: Backward Validation
	Slide 111: Backward Validation
	Slide 112: OCC: Write Phase
	Slide 113: OCC Disadvantages
	Slide 114: OCC Disadvantages

