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Assignment 3 is Out!
Deadline: Nov 30, 2025 at 11:59pm

Final Exam: Dec 8, 2025 at 8-10am

Syllabus → Focus on course not covered in either 
Quiz but you should remember indexing and storage.
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Presentation
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• Time slots to be released today around 11am PST.

• Each group gets a 15min time slot.

• 8 minutes to present + 7 minutes for Q/A

• If 4 group members → 2 min for each member.

• Don’t present your code.

• Present your idea.

• How did you design?

• Why did you select such a design?

• Is there anything cool about your design.

• How did each member contribute?



Last Class
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• We discussed possibility of deadlocks in 2PL.

• There are two ways to manage deadlocks:

• Deadlock Detection → When deadlock occurs, detect and solve.

• Deadlock Prevention → Prevent deadlock from occurring in the first place.



Deadlock Detection
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• Create a waits-for graph.

• Waits-for graph keep track of what locks each transaction is waiting to 
acquire. 

• In the wait-for graph:
• Nodes are transactions 

• Add an Edge from transaction Ti to Tj if Ti is waiting for Tj to release a lock. 

• The system periodically checks for cycles in waits- for graph and then decides how to 
break it.



Deadlock Detection
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

Three transactions 
and three data-items



Deadlock Detection
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 T2

T3



Deadlock Detection
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 T2

T3



Deadlock Detection
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 T2

T3



Deadlock Handling
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• When the DBMS detects a deadlock, it will select a victim. 

• The victim transaction is rollbacked to break the cycle. 

• The victim transaction is either restarted in the future or aborted. 

• Performance trade-off between the frequency of checking for deadlocks 
and the time transactions wait before deadlocks are broken.



Deadlock Handling: Victim Selection
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• Selecting a victim depends on several factors:

• Age (lowest timestamp).

• Progress (least/most queries executed)

• The number of items already locked.

• The number of transactions that need to be rollbacked along with it.

 

• Note: if your DBMS plans to restart the rollbacked transaction, do take into 
account starvation.

• The number of times a transactions has been restarted in the past.



Deadlock Prevention
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Deadlock Prevention
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• If a transaction tries to acquire a lock that is held by another transaction, 
kill one of them to prevent a deadlock. 

• No need for a waits-for graph or detection algorithm.



Deadlock Prevention
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• So how to achieve deadlock prevention?



Deadlock Prevention
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• So how to achieve deadlock prevention?

• Assign a timestamp (time of arrival in the system) to each transaction.

• Prioritize transactions based on the value of timestamps.

• For example: Higher timestamp, lower the priority.



Deadlock Prevention
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• So how to achieve deadlock prevention?

• Assign a timestamp (time of arrival in the system) to each transaction.

• Prioritize transactions based on the value of timestamps.

• For example: Higher timestamp, lower the priority

• Two Designs:

• Wait-Die

• Wound-Wait



Deadlock Prevention: Wait-Die
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• Old Waits for Young

• If requesting transaction has higher priority than holding transaction, then 
requesting transaction waits for holding transaction. 

• Otherwise requesting transaction aborts.



Deadlock Prevention: Wait-Die
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

Three transactions 
and three data-items



Deadlock Prevention: Wait-Die
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 waits!



Deadlock Prevention: Wait-Die
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T2 waits!



Deadlock Prevention: Wait-Die
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T3 aborts, which 
allows T2 to finish 
and thus T1!



Deadlock Prevention: Wound-Wait
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• Young Waits for Old

• If requesting transaction has higher priority than holding transaction, then 
holding transaction aborts and releases lock. 

• Otherwise requesting transaction waits.



Deadlock Prevention: Wound-Wait
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

Three transactions 
and three data-items



Deadlock Prevention: Wound-Wait

24

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T1 needs a lock held by 
T2, so we abort T2.

This allows T1 to finish 
and release locks later.



Deadlock Prevention: Wound-Wait
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T1:

Begin
S-Lock(A)

S-Lock(B)

T2:

Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Time

T3 waits for T1 as 
young waits for old.



Deadlock Prevention
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• Why do these schemes guarantee no deadlocks? 



Deadlock Prevention
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• Why do these schemes guarantee no deadlocks?

 

• Ensure that waiting for locks occur in only one.

• When a transaction restarts, what is its priority? 



Deadlock Prevention
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• Why do these schemes guarantee no deadlocks?

 

• Ensure that waiting for locks occur in only one.

• When a transaction restarts, what is its priority? 

• Its original timestamp to prevent the transaction from starving.



Lock Granularities

29

• What is the right granularity of acquiring a lock?



Lock Granularities
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• What is the right granularity of acquiring a lock?

• The DBMS needs to decide the lock granularity: page, tuple, or attribute?

• Finer the lock granularity, better the performance and harder to guarantee 
code correctness.

• Finer the lock granularity, frequent the need to request/acquire locks.



Lock Granularities
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Database Slightly Rare

Very CommonTable 1 Table 2 Table 3

Page 1 Page 2 Page n

Tuple 1 Tuple 2 Tuple n

Attr 1 Attr 2 Attr 3

Common

Very Common

Rare



Lock Granularities
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Say a transaction T1 has locked some attribute in Table 2/ Page 1 and another 
transaction T2 wants to lock the full database, how to check if T2’s request 
can / cannot be satisfied?



Intention Locks
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• An intention lock allows locking a higher-level node in shared or exclusive 
mode without checking all the descendent nodes. 

• If a node is locked in an intention mode, then some transaction has 
acquired a lock at the lower level in the tree.



Intention Locks
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• Intention-Shared (IS)

• Indicates explicit locking at lower level with S-Locks. 

• Intent to get S-Lock(s) at finer granularity. 

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X-Locks.

• Intent to get X-Lock(s) at finer granularity. 

• Shared+Intention-Exclusive (SIX) 

• The subtree rooted by that node is locked explicitly in S mode and at a 
further lower level explicit locking with X-Locks.



Lock Compatibility Matrix

35

IS IX S SIX X

IS

IX

S

SIX

X

If a transaction Ti holds a lock, can another transaction Tj acquire a lock.

Ti Holds

Tj Wants



Locking Protocol
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• A transaction tries to fetch an appropriate lock at highest level of the 
database hierarchy. 

• To get S or IS lock on a node, the transaction must have at least IS lock on 
the parent node. 

• To get X, IX, or SIX on a node, the transaction must have at least IX lock on 
the parent node.



Example 1
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• T1 → Read a CS employee Kang’s salary.

• T2 → Increase a History employee Anakin’s salary by $100.

• How can we acquire locks in this example?



Example 1

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n



Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n



Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1



Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1



Example 1

T1 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

IST1

ST1



Example 1

T2 starts locking and IS and IX are compatible

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

ST1

IXT2

IST1



Example 1

T2 starts locking

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Tuple n

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

IST1

IST1

ST1

IXT2

IXT2

IXT2

XT2

IST1



Example 2
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• T1 → Read all CS employees salary and increase Kang’s salary by $100.

• T2 → Read salary of CS employee Thanos.

• T3 → Read all CS employees salary .

• How can we acquire locks in this example?



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T1 starts locking

SIXT1



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T1 starts locking

SIXT1

SIXT1

SIXT1

XT1



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T2 starts locking

SIXT1

SIXT1

SIXT1

XT1

IST2



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T2 starts locking

SIXT1

SIXT1

SIXT1

XT1

IST2

IST2

IST2

ST2



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T3 starts locking

SIXT1

SIXT1

SIXT1

XT1

IST2

IST2

IST2

ST2

ST3



Example 2

Database

CS-Emp Table Table 2

Page 1 Page 2 Page n

Kang Tuple 2 Thanos

History-Emp Table

Page 1 Page 2 Page n

Tuple 1 Anakin Tuple n

T3 is not allowed to lock until T1 finishes because T3 wants to read something which has 
SIX intention!

SIXT1

SIXT1

SIXT1

XT1

IST2

IST2

IST2

ST2

ST3



Lock Escalation
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• The DBMS automatically switches to coarser-grained locks when a 
transaction acquires too many finer-grained locks. 

• Reduces the number of requests that the lock manager needs to process.



Discussion
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• 2PL forces transactions to acquire locks!

• Strong Strict 2PL forces transactions to acquire locks early to prevent 
cascade aborts!

• These protocols take a pessimistic approach and assume that conflicts are 
common and transactions access a lot of data items!

• Can we do better?



Timestamp Ordering Concurrency Control
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56

• An optimistic concurrency control protocol.

• Assumption:

• Conflicts between transactions are rare.

• Transactions are short-lived.

• Optimized for the no-conflict cases.

Timestamp Ordering Concurrency Control
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• Each transaction Ti is assigned a unique monotonically increasing timestamp. 

• Let TS(Ti) be the timestamp allocated to transaction Ti. 

• When to assign the timestamp → Depends on the design.

• How to generate a timestamp?

Assigning Timestamps
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• Each transaction Ti is assigned a unique monotonically increasing timestamp. 

• Let TS(Ti) be the timestamp allocated to transaction Ti. 

• When to assign the timestamp → Depends on the design.

• How to generate a timestamp?
• Wall clock time / System time

• Logical counter

• Hybrid

Assigning Timestamps
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• Timestamps are used to determine the serializability order of transactions.

• For two transactions Ti and Tj, if TS(Ti) < TS(Tj), then 

• The DBMS must ensure that the execution schedule for these transactions 
is equivalent to the serial schedule where Ti appears before Tj . 

• Each database object (e.g., tuple) need to track the timestamps of that last 
accessed/modified them.

Timestamp Ordering Concurrency Control
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• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

Optimistic Concurrency Control
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• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

• Each object read is copied into workspace. 

Optimistic Concurrency Control
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• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

• Each object read is copied into workspace. 

• Updates/Writes are applied to workspace. 

Optimistic Concurrency Control
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• Timestamp Ordering (T/O) can be used to design an OCC protocol.

• In OCC using T/O, DBMS creates a private workspace for each transaction.

• Each object read is copied into workspace. 

• Updates/Writes are applied to workspace.

 

• When a transaction commits, the DBMS checks if the workspace writes 
conflict with other transactions. 

• If there are no conflicts, the workspace write set is copied to the database.

Optimistic Concurrency Control
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• How does OCC work?

OCC Phases
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• How does OCC work?

• Three Phases of OCC:

• Read Phase

• Validation Phase

• Write Phase

OCC Phases
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• Track the read/write sets of each transaction and store the writes of each 
transaction in a private workspace.

• DBMS copies every tuple that the transaction accesses from the database to its 
private workspace.

Read Phase
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• Assign the transaction a unique timestamp (TS) and then check whether it 
conflicts with other transactions.

Validation Phase
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• If validation is successful, set the write timestamp (W-TS) for all the modified 
objects in private workspace to the validation timestamp. 

• Next, update the value and timestamp in the database. 

• Otherwise abort transaction.

Write Phase
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

T1 Workspace
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

T2 Workspace
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Timestamp for T2:
TS(T2) = 1
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Nothing written 
so no change to 
timestamp.
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace

No update to 
global database.
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Update in value.
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Timestamp for T1:
TS(T1) = 2
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 2

T1 Workspace

Write-Timestamp set 
for data-item A.
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OCC Example I

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 150 2

Database

Object Value W-TS

A 150 2

T1 Workspace

No conflicts so 
updates written to 
global database.
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• Assign the transaction a unique timestamp (TS) and then check whether it 
conflicts with other transactions.

• When transaction Ti invokes Commit, the DBMS checks if it conflicts with 
other transactions. 

• Simplest mechanism → Use serial validation. 

• How can DBMS guarantee only serializable schedules are permitted?

Validation Phase
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• Assign the transaction a unique timestamp (TS) and then check whether it 
conflicts with other transactions.

• When transaction Ti invokes Commit, the DBMS checks if it conflicts with 
other transactions. 

• Simplest mechanism → Use serial validation. 

• How can DBMS guarantee only serializable schedules are permitted?

• Forward Validation

• Backward Validation 

Validation Phase
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• At the time of commit, each transaction checks if it conflicts with other 
concurrently ongoing transactions (yet to be committed).

• Each going to commit transaction (at the validation step), checks the 
timestamps and read/write sets of other ongoing transactions.

• There are three specific cases to satisfy:

Forward Validation
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• For two transactions T1 and T2, say T1 is at the validation step (T1 < T2 )

• Check if T1 completes its Write phase before T2 begins its Read phase. 

• No conflict as all T1 's actions happen before T2 ‘s.

• Essentially, serial ordering.

Forward Validation: Case I
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Forward Validation: Case I

T1:

Begin
Read
read(A)
write(A)
Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate
Write
Commit

Time
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• For two transactions T1 and T2, say T1 is at the validation step (T1 < T2 )

• Check if T1 completes its Write phase before T2 starts its Write phase. 

• T1 does not modify to any object read by T2.

• WriteSet(T1) ⋂ ReadSet(T2) = 0

Forward Validation: Case II
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

T1 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

T2 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

T1 has to be aborted, 
fails Case II condition.
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database
How about this example?
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

T1 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 100 0

T1 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace



99

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

T2 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace
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Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Safe to commit and finish T2 
as T2 completes before T1.



102

Forward Validation: Case II

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

Time

Object Value W-TS

A 100 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

A 100 0

T2 Workspace

Safe to commit and finish T1 as T2 
has committed and it can be observed 
as logically finishing before T1!
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• For two transactions T1 and T2, say T1 is at the validation step (T1 < T2 )

• Check if T1 completes its Read phase before T2 completes its Read phase.

• T1 should not modify any object read or written by T2.

• WriteSet(T1) ⋂ ReadSet(T2) = 0

• WriteSet(T1) ⋂ WriteSet(T2) = 0

Forward Validation: Case III
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Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database
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Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

Object Value W-TS

A 100 0

T1 Workspace
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Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace
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Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 100 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

B 200 0

T2 Workspace
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Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 150 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

B 200 0

T2 Workspace
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Forward Validation: Case III

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Time

Object Value W-TS

A 150 0

B 200 0

Database

Object Value W-TS

A 150 0

T1 Workspace

Object Value W-TS

B 200 0

A 150 0

T2 Workspace
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Backward Validation
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• At the time of commit, each transaction checks if it conflicts with other 
already committed transactions (transactions which were concurrent and 
have committed).

• Each going to commit transaction (at the validation step), checks the 
timestamps and read/write sets of other committed transactions.

• There are three specific cases to satisfy:

Backward Validation
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• Propagate the changes in the transaction’s private workspace (write set) to the 
database. 

• The idea is to make the transaction’s write-set visible to other transactions.

• Serial Commits: Use a global lock to limit a single transaction to be in the 
Validation/Write phases at a time. 

OCC: Write Phase
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OCC Disadvantages
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• There is an overhead of copying data to private workspace. 
• More data to copy, more expensive!

• Validation/Write phase creates bottlenecks due to locking. 

• Aborting a transaction is more expensive in OCC than in 2PL because it 
occurs after a transaction has already executed.

OCC Disadvantages
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