Database Processing

CS 451 /551

Lecture 13:
Two-Phase Locking and
Time-Stamp Ordering

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 3 1s Out!
Deadline: Nov 30, 2025 at 11:59pm

Final Exam: Dec 8§, 2025 at 8-10am

Syllabus = Focus on course not covered in either
Quiz but you should remember indexing and storage.

Presentation

Time slots to be released today around 11am PST.
Each group gets a 15min time slot.

8 minutes to present + 7 minutes for Q/A
* If 4 group members = 2 min for each member.

Don'’t present your code.

Present your idea.
* How did you design?
« Why did you select such a design?
* Is there anything cool about your design.
* How did each member contribute?

Last Class

* We discussed possibility of deadlocks in 2PL.
* There are two ways to manage deadlocks:
 Deadlock Detection 2> When deadlock occurs, detect and solve.

* Deadlock Prevention 2 Prevent deadlock from occurring in the first place.

Deadlock Detection

* Create a waits-for graph.

* Waits-for graph keep track of what locks each transaction is waiting to
acquire.

* In the wait-for graph:
* Nodes are transactions
* Add an Edge from transaction Ti to Tj if Ti is waiting for Tj to release a lock.

 The system periodically checks for cycles in waits- for graph and then decides how to
break it.

Time

T1:

Begin
S-Lock(A)

S-Lock(B)

Deadlock Detection

T2: T3:
Begin Begin
X-Lock(B)

S-Lock(C)
X-Lock(C)

X-Lock(A)

Three transactions
and three data-items

Deadlock Detection

T1: T2: T3:
Begin Begin Begin
S-Lock(A)
X-Lock(B)
//" S-Lock(C)
Time e

S-Lock(B) -~
X-Lock(C)
X-Lock(A)

Time

T1:

Begin
S-Lock(A)

S-Lock(B) -~

Deadlock Detection

T2: T3:
Begin Begin
X-Lock(B)
Rl S-Lock(C)
7’ 4

’ ’

7’
,/

’

X-Lock(C) »*
X-Lock(A)

Time

Deadlock Detection

T1: T2: T3:
Begin Begin Begin
S-Lock(A)
sso. X-Lock(B)
TN, S-Lock(C)
R ~ae ,,'
S-Lock(B) - e

X-Lock(C) «* ~~~_
X-Lock(A)

9

Deadlock Handling

* When the DBMS detects a deadlock, it will select a victim.
* The victim transaction is rollbacked to break the cycle.
* The victim transaction is either restarted in the future or aborted.

 Performance trade-off between the frequency of checking for deadlocks
and the time transactions wait before deadlocks are broken.

Deadlock Handling: Victim Selection

* Selecting a victim depends on several factors:
* Age (lowest timestamp).
* Progress (least/most queries executed)
* The number of items already locked.
* The number of transactions that need to be rollbacked along with it.

* Note: if your DBMS plans to restart the rollbacked transaction, do take into
account starvation.

* The number of times a transactions has been restarted in the past.

Deadlock Prevention

Deadlock Prevention

» If a transaction tries to acquire a lock that is held by another transaction,
kill one of them to prevent a deadlock.

* No need for a waits-for graph or detection algorithm.

Deadlock Prevention

* So how to achieve deadlock prevention?

Deadlock Prevention

* So how to achieve deadlock prevention?

 Assign a timestamp (time of arrival in the system) to each transaction.

* Prioritize transactions based on the value of timestamps.
* For example: Higher timestamp, lower the priority.

Deadlock Prevention

* So how to achieve deadlock prevention?

 Assign a timestamp (time of arrival in the system) to each transaction.

* Prioritize transactions based on the value of timestamps.
* For example: Higher timestamp, lower the priority

* Two Designs:
 Wait-Die
* Wound-Wait

Deadlock Prevention: Wait-Die

* Old Waits for Young

* If requesting transaction has higher priority than holding transaction, then
requesting transaction waits for holding transaction.

* Otherwise requesting transaction aborts.

Time

Deadlock Prevention: Wait-Die

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:
Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Three transactions
and three data-items

Time

Deadlock Prevention: Wait-Die

T1: T2:
Begin Begin
S-Lock(A)

X-Lock(B)

S-Lock(B) -~
X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

T1 waits!

Time

Deadlock Prevention: Wait-Die

T1: T2:
Begin Begin
S-Lock(A)
X-Lock(B)
,1
S-Lock(B) -~ <

X-Lock(C) »*

T3:

Begin

S-Lock(C)

4
7’
7’

X-Lock(A)

T2 waits!

Time

Deadlock Prevention: Wait-Die

T1:

Begin
S-Lock(A)

~

S

S-Lock(B) -~

T2: T3:
Begin Begin
X-Lock(B)

S :> {: S—I;OCk(C)

s

4

7’

>

X-Lock(C) <~ ~~~o_
X—Lock(AX

T3 aborts, which
allows T2 to finish
and thus T1!

21

Deadlock Prevention: Wound-Wait

* Young Waits for Old

* If requesting transaction has higher priority than holding transaction, then
holding transaction aborts and releases lock.

* Otherwise requesting transaction waits.

Time

Deadlock Prevention: Wound-Wait

T1:

Begin
S-Lock(A)

S-Lock(B)

T2:
Begin

X-Lock(B)

X-Lock(C)

T3:

Begin

S-Lock(C)

X-Lock(A)

Three transactions
and three data-items

Time

Deadlock Prevention: Wound-Wait

T1: T2: T3:
Begin Begin Begin
S-Lock(A)
X-Lock(B)
,//' S-Lo Ck(C)
S-Lock(B) -~ x

X-Lock(C)
X-Lock(A)

T1 needs a lock held by
T2, so we abort T2.

This allows T1 to finish
and release locks later.

Time

Deadlock Prevention: Wound-Wait

T1: T2:
Begin Begin
S-Lock(A)
sso. X-Lock(B)
S-Lock(B) € T
X-Lock(C)

T3:

Begin

S-Lock(C)

S
S
~

X-Lock(A)

T3 waits for T1 as
young waits for old.

25

Deadlock Prevention

* Why do these schemes guarantee no deadlocks?

Deadlock Prevention

* Why do these schemes guarantee no deadlocks?
* Ensure that waiting for locks occur in only one.

* When a transaction restarts, what is its priority?

Deadlock Prevention

* Why do these schemes guarantee no deadlocks?
* Ensure that waiting for locks occur in only one.
* When a transaction restarts, what is its priority?

* Its original timestamp to prevent the transaction from starving.

Lock Granularities

* What is the right granularity of acquiring a lock?

Lock Granularities

* What is the right granularity of acquiring a lock?
* The DBMS needs to decide the lock granularity: page, tuple, or attribute?

* Finer the lock granularity, better the performance and harder to guarantee
code correctness.

* Finer the lock granularity, frequent the need to request/acquire locks.

Lock Granularities

Database

_—

Table 1

Table 2

Page 1

Page 2

Tuple 1

Tuple 2

Attr 1

Attr 2

—

/l\.

Tuple n -----

4/1\,

Attr 3 -----

Table 3

Page n

Slightly Rare

Very Common
Common
Very Common

Rare

Lock Granularities

Say a transaction T1 has locked some attribute in Table 2/ Page 1 and another
transaction T2 wants to lock the full database, how to check if T2’s request
can / cannot be satistied?

Intention Locks

* An intention lock allows locking a higher-level node in shared or exclusive
mode without checking all the descendent nodes.

* If a node is locked in an intention mode, then some transaction has
acquired a lock at the lower level in the tree.

Intention Locks

* Intention-Shared (IS)
* Indicates explicit locking at lower level with S-Locks.
* Intent to get S-Lock(s) at finer granularity.

* Intention-Exclusive (IX)
* Indicates explicit locking at lower level with X-Locks.
* Intent to get X-Lock(s) at finer granularity.

 Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode and at a
further lower level explicit locking with X-Locks.

Lock Compatibility Matrix

If a transaction Ti holds a lock, can another transaction Tj acquire a lock.

Tj Wants
IS IX S SIX X
IS v/ v/ v/ v/ X
IX v v X X X
Ti Holds S v X v/ X X
SIX v X X X X
X X X X X X

Locking Protocol

* A transaction tries to fetch an appropriate lock at highest level of the
database hierarchy.

* To get S or IS lock on a node, the transaction must have at least IS lock on
the parent node.

* To get X, IX, or SIX on a node, the transaction must have at least IX lock on
the parent node.

Example 1

* T1 < Read a CS employee Kang’s salary.
* T2 = Increase a History employee Anakin’s salary by $100.

* How can we acquire locks in this example?

|

Example 1

Database

Page 1

Pagen

/l\.

Anakin

CS-Emp Table Table 2 History-Emp Table
Page2 | =r== Pagen Page 1 Page 2
Tuple2 | === Tuple n Tuple 1

Kang

Tuple n

T1 starts locking

|

Example 1

Database

Page 1

Pagen

/l\.

Anakin

CS-Emp Table Table 2 History-Emp Table
Page2 | =r== Pagen Page 1 Page 2
Tuple2 | === Tuple n Tuple 1

Kang

Tuple n

T1 starts locking

rd

Database

|

Example 1

Page 1

Pagen

/l\.

Anakin

CS-Emp Table Table 2 History-Emp Table
Page2 | =r== Pagen Page 1 Page 2
Tuple2 | === Tuple n Tuple 1

Kang

Tuple n

T1 starts locking

rd

Database

|

Example 1

Page 1

Pagen

/l\.

Anakin

CS-Emp Table Table 2 History-Emp Table
Page2 | =r== Pagen Page 1 Page 2
Tuple2 | === Tuple n Tuple 1

Kang

Tuple n

T1 starts locking

rd

Database

|

Example 1

CS-Emp Table

Table 2

History-Emp Table

—

Page 1

A/l\

/ Kang

ISt

Page 2

Tuple 2

Pagen

Tuple n

—

Page 1

Page 2

Pagen

/l\.

Tuple 1

Anakin

Tuple n

Example 1

T2 starts locking and IS and IX are compatible

|

rd N

Database

CS-Emp Table

Table 2

History-Emp Table

—] T

Page 1

A/l\

/ Kang

ISt

Page 2

Tuple 2

Pagen

Tuple n

—

Page 1

Page 2

Pagen

/l\.

Tuple 1

Anakin

Tuple n

T2 starts locking

|

Example 1

rd N

Database

CS-Emp Table

Table 2

History-Emp Tabl

X1,
N
e

——

Page 1

A/l\

/ Kang

ISt

Page 2

Tuple 2

Pagen

Tuple n

Page 1

M

Page 2

Tuple 1

Tuple n

Example 2

* T1 = Read all CS employees salary and increase Kang’s salary by $100.
* T2 - Read salary of CS employee Thanos.
* T3 = Read all CS employees salary .

* How can we acquire locks in this example?

|

Example 2

Database

Page 1

Pagen

/l\.

Anakin

CS-Emp Table Table 2 History-Emp Table
Page2 | =r== Pagen Page 1 Page 2
Tuple2 | === Thanos Tuple 1

Kang

Tuple n

T1 starts locking

e

Database

|

Example 2

Page 1

Pagen

/l\.

Anakin

CS-Emp Table Table 2 History-Emp Table
Page2 | =r== Pagen Page 1 Page 2
Tuple2 | === Thanos Tuple 1

Kang

Tuple n

Example 2

T1 starts locking

e

Database

|

CS-Emp Table Table 2

History-Emp Table

/ Kang

Page 1

Thanos

Tuple 2

Page 2

—

Pagen

/l\.

Tuple 1

Anakin

Tuple n

Example 2

T2 starts locking

e -

Database

|

CS-Emp Table Table 2

History-Emp Table

/ Kang

Page 1

Thanos

Tuple 2

Page 2

—

Pagen

/l\.

Tuple 1

Anakin

Tuple n

T2 starts locking

DO

Example 2

e -

Database

CS-Emp Table

Table 2

History-Emp Table

/ Kang

—

Page 1

Thanos

/

Page 2

Pagen

/l\.

Tuple 1

Anakin

Tuple n

T3 starts locking

DO

Example 2

)

e -

Database

CS-Emp Table

Table 2

History-Emp Table

/ Kang

/

Thanos

—

Page 1

Page 2

Pagen

/l\.

Tuple 1

Anakin

Tuple n

Example 2

T3 is not allowed to lock until T1 finishes because T3 wants to read something which has

SIX intention! @
e N

Database

DO

CEmp Table Table 2 History-Emp Table

ISTZ ‘/I\A
Page 1 SIXTl) Page 2 Nz Pagen Page 1 Page2 | === Pagen

— I (s, —

/ Kang Tuple2 | === Thanos Tuple 1 Anakin | e Tuple n

Lock Escalation

* The DBMS automatically switches to coarser-grained locks when a
transaction acquires too many finer-grained locks.

* Reduces the number of requests that the lock manager needs to process.

Discussion

* 2PL forces transactions to acquire locks!

* Strong Strict 2PL forces transactions to acquire locks early to prevent
cascade aborts!

* These protocols take a pessimistic approach and assume that conflicts are
common and transactions access a lot of data items!

 Can we do better?

Timestamp Ordering Concurrency Control

Timestamp Ordering Concurrency Control

* An optimistic concurrency control protocol.

* Assumption:
 Conflicts between transactions are rare.
 Transactions are short-lived.

* Optimized for the no-conflict cases.

Assigning Timestamps
 Each transaction Ti is assigned a unique monotonically increasing timestamp.
* Let TS(Ti) be the timestamp allocated to transaction Ti.

* When to assign the timestamp = Depends on the design.

* How to generate a timestamp?

Assigning Timestamps
 Each transaction Ti is assigned a unique monotonically increasing timestamp.
* Let TS(Ti) be the timestamp allocated to transaction Ti.

* When to assign the timestamp = Depends on the design.

* How to generate a timestamp?
« Wall clock time / System time

* Logical counter
* Hybrid

Timestamp Ordering Concurrency Control

* Timestamps are used to determine the serializability order of transactions.

* For two transactions Ti and Tj, if TS(Ti) < TS(Tj), then

* The DBMS must ensure that the execution schedule for these transactions
is equivalent to the serial schedule where Ti appears before Tj .

 Each database object (e.g., tuple) need to track the timestamps of that last
accessed/modified them.

Optimistic Concurrency Control

 Timestamp Ordering (T/O) can be used to design an OCC protocol.

* In OCC using T/O, DBMS creates a private workspace for each transaction.

Optimistic Concurrency Control

 Timestamp Ordering (T/O) can be used to design an OCC protocol.

* In OCC using T/O, DBMS creates a private workspace for each transaction.

 Each object read is copied into workspace.

Optimistic Concurrency Control

 Timestamp Ordering (T/O) can be used to design an OCC protocol.

* In OCC using T/O, DBMS creates a private workspace for each transaction.

 Each object read is copied into workspace.

» Updates/Writes are applied to workspace.

Optimistic Concurrency Control

 Timestamp Ordering (T/O) can be used to design an OCC protocol.

* In OCC using T/O, DBMS creates a private workspace for each transaction.

 Each object read is copied into workspace.

» Updates/Writes are applied to workspace.

* When a transaction commits, the DBMS checks if the workspace writes
conflict with other transactions.

» If there are no conflicts, the workspace write set is copied to the database.

OCC Phases

e How does OCC work?

OCC Phases

e How does OCC work?

* Three Phases of OCC:
* Read Phase
* Validation Phase
* Write Phase

Read Phase

 Track the read/write sets of each transaction and store the writes of each
transaction in a private workspace.

* DBMS copies every tuple that the transaction accesses from the database to its
private workspace.

Validation Phase

* Assign the transaction a unique timestamp (TS) and then check whether it
conflicts with other transactions.

Write Phase

* If validation is successful, set the write timestamp (W-TS) for all the modified
objects in private workspace to the validation timestamp.

* Next, update the value and timestamp in the database.

e Otherwise abort transaction.

OCC Example I

Database
T1: T2:
, A 100 0
Begin
Read
read(A) Begin
Read
Time reac.l(A)
Validate
Write
Commit
write(A)
read(A)
Validate
Write
Commit

Time

T1:

=== Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

Database

A
T1 Workspace

100

W-TS
0

70

Time

T1:

Begin
Read
m=) read(A)

write(A)
read(A)
Validate
Write
Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

A

T1 Workspace

Database

100

A

100

0

W-TS
0

71

Time

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

OCC Example I

T2:

== Begin
Read
read(A)
Validate
Write
Commit

A

Database
WIS
A 100 0

T1 Workspace
100 0
T2 Workspace

72

OCC Example I

Database
T > wers
) A 100 0

Begin
Read
read(A) Begin

Read

Time — read(A) T1 Workspace

Validate

Write A 100 0

Commit
write(A)
read(A) T2 Workspace
Wiite
Commit A 100 0

OCC Example I

Database
gt T2 WIS
A 100 0

Begin
Read
read(A) Begin

Read

Time read(A) T1 Workspace
= Validate

Write A 100 0

Commit
write(A)
read(A) T2 Workspace
Wiite
C ;:n;ﬁt Timestamp for T2: A 100 0

M TS(T2) =1

Time

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
Write
Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
m) Write
Commit

Database
W-TS
A 100 0
T1 Workspace
A 100 0
T2 Workspace
Nothing written A 100 0

so no change to
timestamp. 75

OCC Example I

Database
gt T2 W-TS
, A 100 0

Begin
Read
read(A) Begin

Read

Time read(A) T1 Workspace
Validate
Write A 100 0
= Commit

write(A)
read(A)
Validate
‘é\g;:;it No update to

v global database.

Time

T1:

Begin
Read
read(A)

mep write(A)
read(A)
Validate
Write
Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

A

T1 Workspace

Database

100

A

Update in value.

150

0

W-TS
0

77

Time

T1:

Begin
Read
read(A)

write(A)
mem) read(A)
Validate
Write

Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

A

T1 Workspace

Database

100

A

150

0

W-TS
0

78

Time

T1:

Begin
Read
read(A)

write(A)
read(A)
= Validate
Write

Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

A

T1 Workspace

Database

100

A

Timestamp for T1:
TS(T1) =2

150

0

W-TS
0

79

Time

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
== Write

Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

T1 Workspace

A

Database

100

A

Write-Timestamp set
for data-item A.

150

2

W-TS
0

80

Time

T1:

Begin
Read
read(A)

write(A)
read(A)
Validate
m Write

Commit

OCC Example I

T2:

Begin
Read
read(A)
Validate
Write
Commit

A

T1 Workspace

Database

150

A

No conflicts so
updates written to
global database.

150

2

2

81

Validation Phase

* Assign the transaction a unique timestamp (TS) and then check whether it
conflicts with other transactions.

 When transaction Ti invokes Commit, the DBMS checks if it conflicts with
other transactions.

* Simplest mechanism = Use serial validation.

* How can DBMS guarantee only serializable schedules are permitted?

Validation Phase

* Assign the transaction a unique timestamp (TS) and then check whether it
conflicts with other transactions.

 When transaction Ti invokes Commit, the DBMS checks if it conflicts with
other transactions.

* Simplest mechanism = Use serial validation.

* How can DBMS guarantee only serializable schedules are permitted?
* Forward Validation
* Backward Validation

Forward Validation

e At the time of commit, each transaction checks if it conflicts with other
concurrently ongoing transactions (yet to be committed).

* Each going to commit transaction (at the validation step), checks the
timestamps and read/write sets of other ongoing transactions.

 There are three specific cases to satisty:

Forward Validation: Case I

 For two transactions T1 and T2, say T1 is at the validation step (T1 <12
* Check if T1 completes its Write phase before T2 begins its Read phase.
* No conflict as all T1 's actions happen before T2 ‘s.
* Essentially, serial ordering.

Time

T1:

Begin
Read
read(A)
write(A)
Validate

Write
Commit

Forward Validation: Case I

T2:

Begin
Read
read(A)
Validate
Write
Commit

86

Forward Validation: Case II

 For two transactions T1 and T2, say T1 is at the validation step (T1 <12
* Check if T1 completes its Write phase before T2 starts its Write phase.
* T1 does not modity to any object read by T2.
* WriteSet(T1) N ReadSet(T2) =0

Time

T1:

Begin
Read
read(A)
write(A)

Validate

T2:

Begin
Read
read(A)

Validate
Write
Commit

Database
A 100 0

Forward Validation: Case II

88

Forward Validation: Case II

Database
1 2 WS
, A 100 0
== Begin
Read
read(A)
write(A) Begin
T Read T1 Workspace
m
e read(A)
Validate
Validate
Write
Commit

Forward Validation: Case II

Database
T1: T2: W-TS
, A 100 0
Begin
Read
mem read(A)
write(A) Begin
- Read T1 Workspace
e read(A)
Validate A 100 0
Validate
Write
Commit

Forward Validation: Case II

Database
T 2 WS
A 100 0
Begin
Read
read(A)
== Write(A Begin
- (A) Regd T1 Workspace
e read(A)
Validate A 150 0
Validate
Write
Commit

Time

T1:

Begin
Read
read(A)
write(A)

Validate

Forward Validation: Case II

T2:

== Begin
Read
read(A)

Validate
Write
Commit

A

Database
WIS
A 100 0

T1 Workspace
150 0
T2 Workspace

92

Forward Validation: Case II

Database
T 2 WS
, A 100 0
Begin
Read
read(A)
write(A) Begin
. Read T1 Workspace
Time ca
= read(A)
Validate A 150 0
Validate
Write
Commit T2 Workspace
A 100 0

Forward Validation: Case II

Database
T 2 WS
, A 100 0
Begin
Read
read(A)
write(A) Begin
. Read T1 Workspace
Time ca
read(A)
=) Validate A 150 0
Validate
Write
Commit T2 Workspace
T1 has to be aborted, A 100 0

v fails Case II condition.

How about this example?

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(A)
Validate

Write
Commit

A

Forward Validation: Case II

Database

100

0

95

Forward Validation: Case II

Database
gt T2 WIS
A 100 0
=== Begin
Read
read(A)
write(A) Begin
T Read T1 Workspace
o read(A)
Validate
Validate
Write
Commit Write
Commit

Forward Validation: Case II

Database
gt T2 WS
A 100 0
Begin
Read
mem read(A)
write(A) Begin
T Read T1 Workspace
o read(A)
Validate A 100 0
Validate
Write
Commit Write
Commit

Forward Validation: Case II

Database
gt T2 WS
A 100 0
Begin
Read
read(A)
me Write(A) Begin
T Read T1 Workspace
o read(A)
Validate A 150 0
Validate
Write
Commit Write
Commit

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

Forward Validation: Case II

T2:

== Begin
Read
read(A)
Validate

Write
Commit

A

Database
WIS
A 100 0

T1 Workspace
150 0
T2 Workspace

99

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

Forward Validation: Case II

T2:

Begin

Read
= read(A)

Validate

Write
Commit

A

T1 Workspace

Database

100

A

150

A

0

T2 Workspace

100

W-TS

0

0

100

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

Forward Validation: Case II

W-TS

Database
2
A 100 0
Begin
Read T1 Workspace
read(A)
=) Validate A 150 0
Write T2 Workspace
Commit

Safe to commit and finish T2
as T2 completes before T1.

A

100

0

101

Forward Validation: Case II

Database
Tt T2:
, A 100 0
Begin
Read
read(A)
write(A) Begin
Time Read T1 Workspace
read(A)
Validate A 150 0
== Validate
Write
Commlt Write T2 Workspa ce
C it
om
Safe to commit and finish T1 as T2 A 100 0

has committed and it can be observed
as logically finishing before T1!

102

Forward Validation: Case III

 For two transactions T1 and T2, say T1 is at the validation step (T1 <12
* Check if T1 completes its Read phase before T2 completes its Read phase.
* T1 should not modity any object read or written by T2.
* WriteSet(T1) N ReadSet(T2) =0
* WriteSet(T1) N WriteSet(T2) =0

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

A
B

Forward Validation: Case III

Database

100
200

0
0

104

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

A
B

T1 Workspace

Forward Validation: Case III

Database

100
200

A

100

0

0
0

105

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

A
B

T1 Workspace

Forward Validation: Case III

Database

100
200

A

150

0

0
0

106

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

A
B

T1 Workspace

Forward Validation: Case III

A

150

B

0

W-TS

Database
100 0
200 0
T2 Workspace

200

0

107

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

A
B

T1 Workspace

Forward Validation: Case III

A 150 0

B

W-TS

Database
150 0
200 0
T2 Workspace

200

0

108

Time

T1:

Begin
Read
read(A)
write(A)

Validate
Write
Commit

T2:

Begin
Read
read(B)

read(A)
Validate
Write
Commit

Forward Validation: Case III

Database
WIS
A 150 0
B 200 0

T1 Workspace

A 150 0

T2 Workspace
B 200 0

A 150 0

109

Backward Validation

Backward Validation

e At the time of commit, each transaction checks if it conflicts with other
already committed transactions (transactions which were concurrent and
have committed).

 Each going to commit transaction (at the validation step), checks the
timestamps and read/write sets of other committed transactions.

* There are three specific cases to satisty:

OCC: Write Phase

* Propagate the changes in the transaction’s private workspace (write set) to the
database.

 The idea is to make the transaction’s write-set visible to other transactions.

* Serial Commits: Use a global lock to limit a single transaction to be in the
Validation/Write phases at a time.

OCC Disadvantages

OCC Disadvantages

* There is an overhead of copying data to private workspace.
* More data to copy, more expensive!

* Validation/Write phase creates bottlenecks due to locking.

* Aborting a transaction is more expensive in OCC than in 2PL because it
occurs after a transaction has already executed.

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 3 is Out! Deadline: Nov 30, 2025 at 11:59pm Final Exam: Dec 8, 2025 at 8-10am Syllabus  Focus on course not covered in either Quiz but you should remember indexing and storage.
	Slide 3: Presentation
	Slide 4: Last Class
	Slide 5: Deadlock Detection
	Slide 6: Deadlock Detection
	Slide 7: Deadlock Detection
	Slide 8: Deadlock Detection
	Slide 9: Deadlock Detection
	Slide 10: Deadlock Handling
	Slide 11: Deadlock Handling: Victim Selection
	Slide 12: Deadlock Prevention
	Slide 13: Deadlock Prevention
	Slide 14: Deadlock Prevention
	Slide 15: Deadlock Prevention
	Slide 16: Deadlock Prevention
	Slide 17: Deadlock Prevention: Wait-Die
	Slide 18: Deadlock Prevention: Wait-Die
	Slide 19: Deadlock Prevention: Wait-Die
	Slide 20: Deadlock Prevention: Wait-Die
	Slide 21: Deadlock Prevention: Wait-Die
	Slide 22: Deadlock Prevention: Wound-Wait
	Slide 23: Deadlock Prevention: Wound-Wait
	Slide 24: Deadlock Prevention: Wound-Wait
	Slide 25: Deadlock Prevention: Wound-Wait
	Slide 26: Deadlock Prevention
	Slide 27: Deadlock Prevention
	Slide 28: Deadlock Prevention
	Slide 29: Lock Granularities
	Slide 30: Lock Granularities
	Slide 31: Lock Granularities
	Slide 32: Lock Granularities
	Slide 33: Intention Locks
	Slide 34: Intention Locks
	Slide 35: Lock Compatibility Matrix
	Slide 36: Locking Protocol
	Slide 37: Example 1
	Slide 38: Example 1
	Slide 39: Example 1
	Slide 40: Example 1
	Slide 41: Example 1
	Slide 42: Example 1
	Slide 43: Example 1
	Slide 44: Example 1
	Slide 45: Example 2
	Slide 46: Example 2
	Slide 47: Example 2
	Slide 48: Example 2
	Slide 49: Example 2
	Slide 50: Example 2
	Slide 51: Example 2
	Slide 52: Example 2
	Slide 53: Lock Escalation
	Slide 54: Discussion
	Slide 55: Timestamp Ordering Concurrency Control
	Slide 56: Timestamp Ordering Concurrency Control
	Slide 57: Assigning Timestamps
	Slide 58: Assigning Timestamps
	Slide 59: Timestamp Ordering Concurrency Control
	Slide 60: Optimistic Concurrency Control
	Slide 61: Optimistic Concurrency Control
	Slide 62: Optimistic Concurrency Control
	Slide 63: Optimistic Concurrency Control
	Slide 64: OCC Phases
	Slide 65: OCC Phases
	Slide 66: Read Phase
	Slide 67: Validation Phase
	Slide 68: Write Phase
	Slide 69: OCC Example I
	Slide 70: OCC Example I
	Slide 71: OCC Example I
	Slide 72: OCC Example I
	Slide 73: OCC Example I
	Slide 74: OCC Example I
	Slide 75: OCC Example I
	Slide 76: OCC Example I
	Slide 77: OCC Example I
	Slide 78: OCC Example I
	Slide 79: OCC Example I
	Slide 80: OCC Example I
	Slide 81: OCC Example I
	Slide 82: Validation Phase
	Slide 83: Validation Phase
	Slide 84: Forward Validation
	Slide 85: Forward Validation: Case I
	Slide 86: Forward Validation: Case I
	Slide 87: Forward Validation: Case II
	Slide 88: Forward Validation: Case II
	Slide 89: Forward Validation: Case II
	Slide 90: Forward Validation: Case II
	Slide 91: Forward Validation: Case II
	Slide 92: Forward Validation: Case II
	Slide 93: Forward Validation: Case II
	Slide 94: Forward Validation: Case II
	Slide 95: Forward Validation: Case II
	Slide 96: Forward Validation: Case II
	Slide 97: Forward Validation: Case II
	Slide 98: Forward Validation: Case II
	Slide 99: Forward Validation: Case II
	Slide 100: Forward Validation: Case II
	Slide 101: Forward Validation: Case II
	Slide 102: Forward Validation: Case II
	Slide 103: Forward Validation: Case III
	Slide 104: Forward Validation: Case III
	Slide 105: Forward Validation: Case III
	Slide 106: Forward Validation: Case III
	Slide 107: Forward Validation: Case III
	Slide 108: Forward Validation: Case III
	Slide 109: Forward Validation: Case III
	Slide 110: Backward Validation
	Slide 111: Backward Validation
	Slide 112: OCC: Write Phase
	Slide 113: OCC Disadvantages
	Slide 114: OCC Disadvantages

