
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 14:

Isolation Levels and

Multi-Version Concurrency Control

Assignment 3 is Out!
Deadline: Nov 30, 2025 at 11:59pm

Presentation Slots are Out.

Final Exam: Dec 8, 2025 at 8-10am

Syllabus → Main focus on course not covered in Midterm,
but you should understand indexes and storage.

2

Last Class

3

• We discussed Timestamp Ordering and Forward validation.

• In Forward Validation, at the time of commit, each transaction checks for
conflicts with ongoing transactions.

4

Backward Validation

5

• At the time of commit, each transaction checks if it conflicts with other
already committed transactions (transactions which were concurrent and
have committed).

• Each going to commit transaction (at the validation step), checks the
timestamps and read/write sets of other committed transactions.

Backward Validation

6

OCC Disadvantages

7

• There is an overhead of copying data to private workspace.
• More data to copy, more expensive!

• Validation/Write phase creates bottlenecks due to locking.

• Aborting a transaction is more expensive in OCC than in 2PL because it
occurs after a transaction has already executed.

OCC Disadvantages

8

Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

Is there any problem with this schedule?

9

Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

10

Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

Say, output = 10

11

Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

Added a new record.

12

Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

Now, output = 11

13

Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

The output of the two queries changed!

14

Phantom Problem

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

This is also termed as a phantom
problem.

15

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 (name varchar(20),

 age int,

 salary int

);

Violates our traditional definition of 2PL?
T1 cannot take a lock on something that
does not exist!

Phantom Problem

16

Why Phantom Problem?

17

• We took read/write locks on existing records, and our locking scheme
assumed a static system.

• But real-world databases are dynamic.

• Concurrent transactions can add new records, and our locking scheme does
not consider insertions, deletions, and updates.

Why Phantom Problem?

18

Solutions to Phantom Problem

19

• Index locking schemes can help eliminate phantom problem.

• Four key mechanisms in index locking schemes:

• Key-Value Locks

• Gap Locks

• Key-Range Locks

• Hierarchical Locking

Index Locking Schemes

20

• Locks that cover a single key-value pair in an index → Standard Locks.

• For non-existent key-value pairs, we would need virtual keys.

Key-Value Locks

6 8 10 12B+-tree Leaf Nodes

21

• Locks that cover a single key-value pair in an index → Standard Locks.

• For non-existent key-value pairs, we would need virtual keys.

Key-Value Locks

6 8 10 12

Update 10 → Lock 10.

B+-tree Leaf Nodes

22

• Locks acquired on empty slots or gaps in the index.

• Gaps are like missing possible keys in the index.

Gap Locks

6 8 10 12B+-tree Leaf Nodes

23

• Locks acquired on empty slots or gaps in the index.

• Gaps are like missing possible keys in the index.

Gap Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock on
gap between 10-12.

24

• Locks acquired on empty slots or gaps in the index.

• Gaps are like missing possible keys in the index.

• Once a gap lock is taken, only the locking transaction can modify the gap.

Gap Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock on
gap between 10-12.

25

• Locks that cover a key and a gap → Key-lock + Gap-lock.

Key-Range Locks

6 8 10 12B+-tree Leaf Nodes

26

• Locks that cover a key and a gap → Key-lock + Gap-lock.

Key-Range Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock from 10-12.

27

• Locks that cover a key and a gap → Key-lock + Gap-lock.

Key-Range Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock from 10-12.

28

• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

29

• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

30

• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

SIXT1

XT1

31

• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

Say, T2 wants to read all numbers from 6 to 8.

XT1

IST2

SIXT1

32

Weaker Levels of Isolation

33

• Serializability permits programmers to ignore concurrency issues.

• But enforcing serializability restricts opportunities for concurrency and limits
performance.

• Solution? → Use a weaker level of consistency to improve scalability.

Weaker Levels of Isolation

34

• Isolation Levels control the extent to which a transaction is exposed to the
actions of other concurrent transactions.

• Providing greater concurrency leads to several challenges:

• Dirty Reads (W-R)

• Unrepeatable Reads (R-W)

• Lost Updates (W-W)

• Phantom Reads

Weaker Levels of Isolation

35

• Serializable: no phantoms, all reads repeatable, no dirty reads.

Weaker Levels of Isolation

Isolation
(High → Low)

36

• Serializable: no phantoms, all reads repeatable, no dirty reads.

• Repeatable Reads: phantoms may happen.

Weaker Levels of Isolation

Isolation
(High → Low)

37

• Serializable: no phantoms, all reads repeatable, no dirty reads.

• Repeatable Reads: phantoms may happen.

• Read Committed: phantoms, unrepeatable reads, and lost updates
may happen.

Weaker Levels of Isolation

Isolation
(High → Low)

38

• Serializable: no phantoms, all reads repeatable, no dirty reads.

• Repeatable Reads: phantoms may happen.

• Read Committed: phantoms, unrepeatable reads, and lost updates
may happen.

• Read Uncommitted: all anomalies may happen.

Weaker Levels of Isolation

Isolation
(High → Low)

39

• Serializable: Strong Strict 2PL with phantom protection (example
through use of index locks)

• Repeatable Reads: Same as above, but without phantom
protection.

• Read Committed: Same as above, but S-Locks are released
immediately.

• Read Uncommitted: Same as above but allows dirty reads (no S-
Locks).

Weaker Levels of Isolation

Isolation
(High → Low)

Multi-Version Concurrency Control

40

41

• The DBMS maintains multiple physical versions of each record in the
database.

• When a transaction reads a record, it reads the newest version that existed
when the transaction started.

• When a transaction writes/updates a record, the DBMS creates a new
version of that record.

Multi-Version Concurrency Control

42

• In MVCC,

• Writers do not block readers.

• Readers do not block writers.

• Read-only transactions can read from a consistent snapshot without
acquiring locks.

• MVCC uses timestamps to determine visibility.

• MVCC provides support for time-travel queries if you skip doing garbage
collection.

• Run this query on the database state 2 weeks ago.

Multi-Version Concurrency Control

43

• How does MVCC work?

Multi-Version Concurrency Control

44

• How does MVCC work?

• For each transaction:

• Create a new version on write.

• Assign a begin timestamp and end timestamp.

• End timestamp of previous version = begin timestamp of new version.

• Remember, we will still try to maintain isolation.

• A concurrent transaction should not see uncommitted versions.

• Concurrent transactions should read only committed versions.

• View uncommitted versions as written in the local/logical space.

Multi-Version Concurrency Control

45

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100

Database

46

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

At start of the transaction get a begin timestamp.

47

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

Next, read the latest version from the database.

48

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

TS(T2) = 2

Begin timestamp for T2.

49

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

A1 200

Database

TS(T1) = 1

TS(T2) = 2

Create a new version for T2.

50

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Begin Timestamp for the new version of A is T2’s begin timestamp.

51

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Set end Timestamp for the previous.

52

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

But how would a future transaction know which version should it read or
which is the committed version?

53

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Maintain transaction status table!

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

54

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Assume a new transaction T3 arrives at this moment and wants to read A, which
version should it read?

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

55

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

If T3 is allowed to read only committed changes, then version A0, and if
uncommitted changes are allowed then A1.

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

56

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

T1 commits

Object Timestamp Status

T2 2 Active

Transaction Status

57

Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

T2 commits.

Object Timestamp Status

Transaction Status

58

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

Object Timestamp Status

T1 1 Active

Transaction Status

59

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

Object Timestamp Status

T1 1 Active

Transaction Status

60

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

Object Timestamp Status

T1 1 Active

Transaction Status

New version due to write operation.

61

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

62

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

What version will T2 read?

63

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

T2 will read version A0 because A1 is not committed yet as T1 is still Active!

64

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

What happens now?

65

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

This write operation should wait otherwise T2 will create a conflicting version.

66

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

Essentially, T2 is not allowed to create any version until T1 commits!

67

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

T1 reads version A1 as it is local to T1.

68

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

T1 commits and now we allow T2 to continue running.

69

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1 2

A2 200 2

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

T1 commits and now we allow T2 to continue running.

70

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1 2

A2 200 2

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

Is this serializable?

71

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1 2

A2 200 2

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

Is this serializable? No, because T2 reads an older version.

72

Snapshot Isolation

• When a transaction starts, it sees a consistent snapshot of the database.

• Snapshot of the database that existed when that the transaction started.

• No uncommitted writes from active transactions are visible.

• If two transactions update the same object, then the first writer does not wait.

• SI sometimes faces the Write Skew Anomaly.

73

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

74

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

75

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

76

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

77

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

78

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

But this is not serializable.

79

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

This is serializable.

80

MVCC Design Decisions

• What do we need to consider while designing an MVCC scheme?

81

MVCC Design Decisions

• What do we need to consider while designing an MVCC scheme?

• Preventing Write Skew

• Version Storage

• Garbage Collection

• Index Management

• Deletes

82

Concurrency Control Protocol

• Approach 1: Timestamp Ordering

• Assign transactions timestamps that determine serial order.

• Approach 2: Optimistic Concurrency Control

• Three-phase protocol that we learnt in T/O lecture.

• Use private workspace for new versions.

• Approach 3: Two-Phase Locking

• Transactions acquire lock on physical version before they can read/write a
logical tuple.

83

Version Storage

• How to store versions?

84

Version Storage

• How to store versions?

• The DBMS uses the record’s pointer field to create a version chain per logical
tuple.

• This allows the DBMS to find the version that is visible to a particular
transaction at runtime.

• Indexes always point to the head of the chain.

• Different storage schemes determine where/what to store for each version.

85

Garbage Collection

• How to garbage collect old versions?

86

Garbage Collection

• How to garbage collect old versions?

• The DBMS needs to remove reclaimable physical versions from the database
over time.

• No active transaction in the DBMS should be able to see a version going to be
garbage collected.

• For example: A version was created by an aborted transaction should be
garbage collected.

• Two additional design decisions:

• How to look for expired versions?

• How to decide when it is safe to reclaim memory?

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 3 is Out! Deadline: Nov 30, 2025 at 11:59pm Presentation Slots are Out. Final Exam: Dec 8, 2025 at 8-10am Syllabus  Main focus on course not covered in Midterm, but you should understand indexes and storage.
	Slide 3: Last Class
	Slide 4: Backward Validation
	Slide 5: Backward Validation
	Slide 6: OCC Disadvantages
	Slide 7: OCC Disadvantages
	Slide 8: Queries Isolation
	Slide 9: Queries Isolation
	Slide 10: Queries Isolation
	Slide 11: Queries Isolation
	Slide 12: Queries Isolation
	Slide 13: Queries Isolation
	Slide 14: Phantom Problem
	Slide 15: Phantom Problem
	Slide 16: Why Phantom Problem?
	Slide 17: Why Phantom Problem?
	Slide 18: Solutions to Phantom Problem
	Slide 19: Index Locking Schemes
	Slide 20: Key-Value Locks
	Slide 21: Key-Value Locks
	Slide 22: Gap Locks
	Slide 23: Gap Locks
	Slide 24: Gap Locks
	Slide 25: Key-Range Locks
	Slide 26: Key-Range Locks
	Slide 27: Key-Range Locks
	Slide 28: Hierarchical Locks
	Slide 29: Hierarchical Locks
	Slide 30: Hierarchical Locks
	Slide 31: Hierarchical Locks
	Slide 32: Weaker Levels of Isolation
	Slide 33: Weaker Levels of Isolation
	Slide 34: Weaker Levels of Isolation
	Slide 35: Weaker Levels of Isolation
	Slide 36: Weaker Levels of Isolation
	Slide 37: Weaker Levels of Isolation
	Slide 38: Weaker Levels of Isolation
	Slide 39: Weaker Levels of Isolation
	Slide 40: Multi-Version Concurrency Control
	Slide 41: Multi-Version Concurrency Control
	Slide 42: Multi-Version Concurrency Control
	Slide 43: Multi-Version Concurrency Control
	Slide 44: Multi-Version Concurrency Control
	Slide 45: Example 1
	Slide 46: Example 1
	Slide 47: Example 1
	Slide 48: Example 1
	Slide 49: Example 1
	Slide 50: Example 1
	Slide 51: Example 1
	Slide 52: Example 1
	Slide 53: Example 1
	Slide 54: Example 1
	Slide 55: Example 1
	Slide 56: Example 1
	Slide 57: Example 1
	Slide 58: Example 2
	Slide 59: Example 2
	Slide 60: Example 2
	Slide 61: Example 2
	Slide 62: Example 2
	Slide 63: Example 2
	Slide 64: Example 2
	Slide 65: Example 2
	Slide 66: Example 2
	Slide 67: Example 2
	Slide 68: Example 2
	Slide 69: Example 2
	Slide 70: Example 2
	Slide 71: Example 2
	Slide 72: Snapshot Isolation
	Slide 73: Write Skew Anomaly
	Slide 74: Write Skew Anomaly
	Slide 75: Write Skew Anomaly
	Slide 76: Write Skew Anomaly
	Slide 77: Write Skew Anomaly
	Slide 78: Write Skew Anomaly
	Slide 79: Write Skew Anomaly
	Slide 80: MVCC Design Decisions
	Slide 81: MVCC Design Decisions
	Slide 82: Concurrency Control Protocol
	Slide 83: Version Storage
	Slide 84: Version Storage
	Slide 85: Garbage Collection
	Slide 86: Garbage Collection

