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Assignment 3 1s Out!
Deadline: Nov 30, 2025 at 11:59pm

Presentation Slots are Out.

Final Exam: Dec 8, 2025 at 8-10am

Syllabus = Main focus on course not covered in Midterm,
but you should understand indexes and storage.



Last Class

* We discussed Timestamp Ordering and Forward validation.

* In Forward Validation, at the time of commit, each transaction checks for
conflicts with ongoing transactions.



Backward Validation



Backward Validation

e At the time of commit, each transaction checks if it conflicts with other
already committed transactions (transactions which were concurrent and
have committed).

 Each going to commit transaction (at the validation step), checks the
timestamps and read/write sets of other committed transactions.



OCC Disadvantages



OCC Disadvantages

* There is an overhead of copying data to private workspace.
* More data to copy, more expensive!

* Validation/Write phase creates bottlenecks due to locking.

* Aborting a transaction is more expensive in OCC than in 2PL because it
occurs after a transaction has already executed.



Time

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

Queries Isolation

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

create table cs_employees

( name varchar(20),
age int,
salary int

Is there any problem with this schedule?




Time

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

Queries Isolation

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

create table cs_employees

( name varchar(20),
age int,
salary int




Time

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

Queries Isolation

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

create table cs_employees

( name varchar(20),
age int,
salary int

Say, output =10




Time

Queries Isolation

T1: T2:
Begin Begin

select count(*) as cnt
from cs_cmployees
where age > 30
== insertinto cs_employees

values (anakin, 70, 500)

select count(*) as cnt Commit
from cs_cmployees
where age > 30

create table cs_employees

( name varchar(20),
age int,
salary int

Commit Added a new record.




Time

\4

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

== select count(*) as ent

from cs_cmployees
where age > 30

Commit

Queries Isolation

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

create table cs_employees

( name varchar(20),
age int,
salary int

Now, output =11




Time

\4

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

== select count(*) as ent

from cs_cmployees
where age > 30

Commit

Queries Isolation

T2: create table cs_employees
) ( name varchar(20),
Begin
age int,
salary int
);

insert into cs_employees
values (anakin, 70, 500)

Commit

The output of the two queries changed!

13




Time

\4

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

== select count(*) as ent

from cs_cmployees
where age > 30

Commit

Phantom Problem

T2: create table cs_employees
) ( name varchar(20),
Begin
age int,
salary int
);

insert into cs_employees
values (anakin, 70, 500)

Commit

This is also termed as a phantom
problem.
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Time

\4

T1:
Begin
select count(*) as cnt

from cs_cmployees
where age > 30

== select count(*) as ent

from cs_cmployees
where age > 30

Commit

Phantom Problem

T2: create table cs_employees
) ( name varchar(20),
Begin
age int,
salary int
);

insert into cs_employees
values (anakin, 70, 500)

Commit

Violates our traditional definition of 2PL?
T1 cannot take a lock on something that
does not exist!



Why Phantom Problem?



Why Phantom Problem?

* We took read/write locks on existing records, and our locking scheme
assumed a static system.

* But real-world databases are dynamic.

 Concurrent transactions can add new records, and our locking scheme does
not consider insertions, deletions, and updates.



Solutions to Phantom Problem



Index Locking Schemes

* Index locking schemes can help eliminate phantom problem.

* Four key mechanisms in index locking schemes:
* Key-Value Locks
* Gap Locks
* Key-Range Locks
 Hierarchical Locking



Key-Value Locks

* Locks that cover a single key-value pair in an index = Standard Locks.

 For non-existent key-value pairs, we would need virtual keys.

B*-tree Leaf Nodes 6 8 10 12



Key-Value Locks

* Locks that cover a single key-value pair in an index = Standard Locks.

 For non-existent key-value pairs, we would need virtual keys.

_@

B*-tree Leaf Nodes 6 8 10 12

Update 10 - Lock 10.



Gap Locks

* Locks acquired on empty slots or gaps in the index.

* Gaps are like missing possible keys in the index.

B*-tree Leaf Nodes 6 8 10

12



Gap Locks

* Locks acquired on empty slots or gaps in the index.

* Gaps are like missing possible keys in the index.

B*-tree Leaf Nodes 6 8 10

Say, we want to take a lock on
gap between 10-12.

12



Gap Locks

* Locks acquired on empty slots or gaps in the index.
* Gaps are like missing possible keys in the index.

* Once a gap lock is taken, only the locking transaction can modify the gap.

a
B*-tree Leaf Nodes 6 8 10 Q-‘12

Say, we want to take a lock on
gap between 10-12.



Key-Range Locks

 Locks that cover a key and a gap = Key-lock + Gap-lock.

B*-tree Leaf Nodes 6 8 10 12



Key-Range Locks

 Locks that cover a key and a gap = Key-lock + Gap-lock.

B*-tree Leaf Nodes 6 8 10 12

Say, we want to take a lock from 10-12.



Key-Range Locks

 Locks that cover a key and a gap = Key-lock + Gap-lock.

B*-tree Leaf Nodes 6 8 10 12

Say, we want to take a lock from 10-12.



Hierarchical Locks

 Allow a transaction to acquire key-range locks in a wider variety of modes.

* Remember the locking granularity matrix.

B*-tree Leaf Nodes 6 8 10 12



Hierarchical Locks

 Allow a transaction to acquire key-range locks in a wider variety of modes.

* Remember the locking granularity matrix.

B*-tree Leaf Nodes 6 8 10 12

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.



Hierarchical Locks

 Allow a transaction to acquire key-range locks in a wider variety of modes.

* Remember the locking granularity matrix.

X1

B*-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

30



Hierarchical Locks

 Allow a transaction to acquire key-range locks in a wider variety of modes.

* Remember the locking granularity matrix.

SIX1
a X11
— — a—
B*-tree Leaf Nodes 6 8 10 12
ISy,

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

Say, T2 wants to read all numbers from 6 to 8.



Weaker Levels of Isolation



Weaker Levels of Isolation

* Serializability permits programmers to ignore concurrency issues.

* But enforcing serializability restricts opportunities for concurrency and limits
performance.

* Solution? = Use a weaker level of consistency to improve scalability.



Weaker Levels of Isolation

* Isolation Levels control the extent to which a transaction is exposed to the
actions of other concurrent transactions.

 Providing greater concurrency leads to several challenges:
* Dirty Reads (W-R)
* Unrepeatable Reads (R-W)
* Lost Updates (W-W)
* Phantom Reads



Isolation
(High > Low)

Weaker Levels of Isolation

* Serializable: no phantoms, all reads repeatable, no dirty reads.

35



Weaker Levels of Isolation

* Serializable: no phantoms, all reads repeatable, no dirty reads.

* Repeatable Reads: phantoms may happen.

Isolation
(High - Low)




Weaker Levels of Isolation

* Serializable: no phantoms, all reads repeatable, no dirty reads.

* Repeatable Reads: phantoms may happen.

Isolation

(High = Low) | ', Read Committed: phantoms, unrepeatable reads, and lost updates

may happen.




Weaker Levels of Isolation

* Serializable: no phantoms, all reads repeatable, no dirty reads.

* Repeatable Reads: phantoms may happen.

Isolation

(High = Low) | ', Read Committed: phantoms, unrepeatable reads, and lost updates

may happen.

* Read Uncommitted: all anomalies may happen.

v



Weaker Levels of Isolation

* Serializable: Strong Strict 2PL with phantom protection (example
through use of index locks)

Isolation * Repeatable Reads: Same as above, but without phantom
(High = Low) protection.

* Read Committed: Same as above, but S-Locks are released
immediately.

* Read Uncommitted: Same as above but allows dirty reads (no S-
Locks).

v



Multi-Version Concurrency Control



Multi-Version Concurrency Control

* The DBMS maintains multiple physical versions of each record in the
database.

« When a transaction reads a record, it reads the newest version that existed
when the transaction started.

* When a transaction writes/updates a record, the DBMS creates a new
version of that record.



Multi-Version Concurrency Control

« In MVCC(,
e Writers do not block readers.
 Readers do not block writers.

* Read-only transactions can read from a consistent snapshot without
acquiring locks.

* MVCC uses timestamps to determine visibility.

* MVCC provides support for time-travel queries if you skip doing garbage
collection.

* Run this query on the database state 2 weeks ago.



Multi-Version Concurrency Control

e How does MVCC work?



Multi-Version Concurrency Control

e How does MVCC work?

* For each transaction:
* Create a new version on write.
* Assign a begin timestamp and end timestamp.
* End timestamp of previous version = begin timestamp of new version.

* Remember, we will still try to maintain isolation.
* A concurrent transaction should not see uncommitted versions.
* Concurrent transactions should read only committed versions.
* View uncommitted versions as written in the local/logical space.



Time

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Example 1

Database

A, 100

45



T1:

== Begin

, read(A)
Time
read(A)
Commit

T2:

Begin
write(A)

Commit

Example 1

TS(T,) =1

At start of the transaction get a begin timestamp.

Database

A, 100 0

46



T1:

Begin

. == read(A)
Time
read(A)
Commit

Example 1

T2:

TS(T,) =1

Begin
write(A)

Commit

Next, read the latest version from the database.

Database

A, 100 0

47



T1:

Begin

, read(A)
Time
read(A)
Commit

T2:

- Begin
write(A)

Commit

Begin timestamp for T2.

Example 1

TS(T,) =1

TS(Tz) =2

Database

A, 100 0

48



Example 1

Database
T1: T2:
Beein TS(T,) =1 A 100 0
g ! A 200
. read(A) !

read(A) ) Write(A)
Commit

Commit

Create a new version for T2.



Example 1

Database

T1: T2
Begin TS(T,) =1 A 100 0

| read(A) A, 200 2

Time Begin TS(T,) =2
read(A) m) Wwrite(A)
Commit
Commit

Begin Timestamp for the new version of A is T2’s begin timestamp.



Example 1

T1: T2:
Begin TS(Ty) =1
, read(A)
Time Begin TS(T,) =2
read(A) m) Wwrite(A)
Commit
Commit

Set end Timestamp for the previous.

Database
A, 100 0 2
A, 200 2

51



Example 1

Database
T1: T2
Begin TS(T) =1 A, 100 0 2
| read(A) A, 200 2
Time Begin TS(T,) =2

read(A) ) Wwrite(A)
Commit

Commit

But how would a future transaction know which version should it read or
which is the committed version?



Example 1

Database
T T2
Begin TS(T,) =1 S ° ?
. read(A) A, 200 2
Time Begin TS(T,) =2
read(A) ) Wwrite(A)
Commit
! Commit Transaction Status
T, 1 Active
T, 2 Active

Maintain transaction status table!



Example 1

Database
T T2
Begin TS(T,) =1 S ° ?
. read(A) A, 200 2
Time Begin TS(T,) =2
read(A) ) Wwrite(A)
Commit
! Commit Transaction Status
T, 1 Active
T, 2 Active

Assume a new transaction T3 arrives at this moment and wants to read A, which
version should it read?



Example 1

Database
T T2
Begin TS(T,) =1 S ° ?
. read(A) A, 200 2
Time Begin TS(T,) =2
read(A) ) Wwrite(A)
Commit
! Commit Transaction Status
T, 1 Active
T, 2 Active

If T3 is allowed to read only committed changes, then version A, and if
uncommitted changes are allowed then A;



Example 1

Database
T T
Begin TS(T,) =1 S ° ?
, read(A) S I 2
Time Begin TS(T,) =2

read(A) write(A)

me Commit

! Commit Transaction Status

T, 2 Active

T1 commits



T1:

Begin

, read(A)
Time
read(A)
Commit

T2 commits.

T2:

Begin
write(A)

m= Commit

Example 1

TS(T,) =1

TS(Tz) =2

Database
A, 100 0 2
A, 200 2

Transaction Status

Object

57



Example 2

Database
TL T2
== Begin TS(T,) =1 Ay 100 0
] read(A)
Time write(A) Begin

read(A)
write(A)

read(A) Transaction Status

Commit Commit

T, 1 Active



Example 2

Database
TL T2
Begin TS(T)) =1 I
. === read(A)
Time write(A) Begin
read(A)
write(A)
read(A) Transaction Status

Commit Commit

T, 1 Active



Example 2

Database
T1: T2
Begin TS(T) =1 A, 100 0 1
| read(A) A, 200 1
Time L, rite(A) Begin
read(A)
write(A)
read(A) Transaction Status

Commit Commit

T, 1 Active

New version due to write operation.



Example 2

Database
TL. T2
Begin TS(T) =1 A, 100 0 1
| read(A) A, 200 1
Time write(A) — === Begin TS(T,) =2
read(A)
write(A)
read(A) Transaction Status

Commit Commit

T, 1 Active
T, 2 Active



Example 2

Database
T1: T2
Begin TS(T) =1 A, 100 0 1
| read(A) A, 200 1
Time | orite(A) Begin TS(T,) =2
= read(A)
write(A)
| Ejead(A?t Transaction Status
ommi , :
Commit
T, 1 Active
T, 2 Active

What version will T2 read?



Example 2

Database
T1. T2
Begin TS(T,) =1 S e .
| read(A) A, 200 1
Time write( A) Begin TS(TZ) =2
= read(A)
write(A)
| Igad(A?t Transaction Status
ommi : :
Commit
T, 1 Active
T, 2 Active

T2 will read version A,because A, is not committed yet as T, is still Active!



Example 2

Database
TL. T2
Begin TS(T;) =1 A, 100 0 1
| read(A) A, 200 1
Time | torite(A) Begin TS(Ty) =2
read(A)
m) write(A)
| Ejead(A?t Transaction Status
omm et _Timestamp | Status__
Commit Timestamp Status
T, 1 Active
T, 2 Active

What happens now?



Example 2

Database
T1. T2
Begin TS(T,) =1 S e .
| read(A) A, 200 1
Time write( A) Begin TS(TZ) =2
read(A)
m) write(A)
| Igad(A?t Transaction Status
ommi : :
Commit
T, 1 Active
T, 2 Active

This write operation should wait otherwise T2 will create a conflicting version.



Example 2

Database
T1. T2
Begin TS(T,) =1 S e .
| read(A) A, 200 1
Time write( A) Begin TS(TZ) =2
read(A)
m) write(A)
| Igad(A?t Transaction Status
ommi : :
Commit
T, 1 Active
T, 2 Active

Essentially, T2 is not allowed to create any version until T1 commits!



Example 2

Database
T1. T2
Begin TS(T,) =1 S e .
| read(A) A, 200 1
Time | torite(A) Begin TS(Ty) =2
read(A)
write(A)
T’ Ejead(A?t Transaction Status
ommt ject| Timestamp | _ Status
Commit Timestamp Status
T, 1 Active
T, 2 Active

T1 reads version A, as it is local to T1.



Example 2

Database
T1. T2
Begin TS(T,) =1 A, 100 0 1
| read(A) A, 200 1
Time write( A) Begin TS(TZ) =2
read(A)
write(A)
IR Ejead(A?t Transaction Status
ommi et _Timestamy_|__Staus__
Commit Status
T, 1 Committed
T, 2 Active

T1 commits and now we allow T2 to continue running.



Example 2

Database
T1: T2
Begin TS(T,) =1 S e -
, read(A) s oA ! 2
Time | yrite(a) Begin TS(T,) =2 A, 200 -
read(A)
) write(A)
read(A) Transaction Status

Commit Commit

T, 1 Committed
T, 2 Active

T1 commits and now we allow T2 to continue running.



Example 2

Database
TL. T2
Begin TS(T,) =1 S e .
, read(A) G 1 2
Time | yrite(a) Begin TS(T,) =2 A, 200 :
read(A)
) write(A)
| Ejead(A?t Transaction Status
omm ect|_Timestamp | Status__
Commit Timestamp Status
T, 1 Committed
T, 2 Active

Is this serializable?



Example 2

Database
T1. T2
Begin TS(T) =1 A, 100 0 1
, read(A) s oA ! 2
Time | yrite(a) Begin TS(T,) =2 A, 200 :
read(A)
) write(A)
| Ejead(A?t Transaction Status
ommt ject| Timestamp |  Status
Commit Timestamp Status
T, 1 Committed
T, 2 Active

Is this serializable? No, because T2 reads an older version.



Snapshot Isolation

* When a transaction starts, it sees a consistent snapshot of the database.
* Snapshot of the database that existed when that the transaction started.

* No uncommitted writes from active transactions are visible.
* If two transactions update the same object, then the first writer does not wait.

* SI sometimes faces the Write Skew Anomaly.



ol
@

Write Skew Anomaly

T1 = Turn all balls Black

T2 - Turn all balls White
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Write Skew Anomaly

T1 = Turn all balls Black

OO
X
OO

T2 - Turn all balls White



Write Skew Anomaly

T1 = Turn all balls Black




Write Skew Anomaly

T1 = Turn all balls Black




Write Skew Anomaly

T1 = Turn all balls Black




Write Skew Anomaly

T1 = Turn all balls Black

X
OO

But this is not serializable.



Write Skew Anomaly

T1 = Turn all balls Black

T2 = Turn all balls White

This is serializable.



MVCC Design Decisions

* What do we need to consider while designing an MVCC scheme?



MVCC Design Decisions

* What do we need to consider while designing an MVCC scheme?

* Preventing Write Skew
* Version Storage

* Garbage Collection

* Index Management

* Deletes



Concurrency Control Protocol

* Approach 1: Timestamp Ordering
* Assign transactions timestamps that determine serial order.

* Approach 2: Optimistic Concurrency Control
 Three-phase protocol that we learnt in T/O lecture.
* Use private workspace for new versions.

* Approach 3: Two-Phase Locking

* Transactions acquire lock on physical version before they can read/write a
logical tuple.



Version Storage

e How to store versions?



Version Storage

e How to store versions?

* The DBMS uses the record’s pointer field to create a version chain per logical
tuple.

* This allows the DBMS to find the version that is visible to a particular
transaction at runtime.

* Indexes always point to the head of the chain.

* Different storage schemes determine where/what to store for each version.



Garbage Collection

* How to garbage collect old versions?



Garbage Collection

* How to garbage collect old versions?

* The DBMS needs to remove reclaimable physical versions from the database
over time.

* No active transaction in the DBMS should be able to see a version going to be
garbage collected.

» For example: A version was created by an aborted transaction should be
garbage collected.

* Two additional design decisions:
* How to look for expired versions?
* How to decide when it is safe to reclaim memory?
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