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Assignment 3 is Out!
Deadline: Nov 30, 2025 at 11:59pm

Presentation Slots are Out.

Final Exam: Dec 8, 2025 at 8-10am

Syllabus → Main focus on course not covered in Midterm, 
but you should understand indexes and storage.
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Last Class

3

• We discussed Timestamp Ordering and Forward validation.

• In Forward Validation, at the time of commit, each transaction checks for 
conflicts with ongoing transactions.
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Backward Validation
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• At the time of commit, each transaction checks if it conflicts with other 
already committed transactions (transactions which were concurrent and 
have committed).

• Each going to commit transaction (at the validation step), checks the 
timestamps and read/write sets of other committed transactions.

Backward Validation
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OCC Disadvantages
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• There is an overhead of copying data to private workspace. 
• More data to copy, more expensive!

• Validation/Write phase creates bottlenecks due to locking. 

• Aborting a transaction is more expensive in OCC than in 2PL because it 
occurs after a transaction has already executed.

OCC Disadvantages
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Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

Is there any problem with this schedule?
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Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );
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Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

Say, output = 10
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Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

Added a new record.
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Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

Now, output = 11
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Queries Isolation

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

The output of the two queries changed!
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Phantom Problem

T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

This is also termed as a phantom 
problem.
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T1:

Begin

select count(*) as cnt
from cs_cmployees
where age > 30

select count(*) as cnt
from cs_cmployees
where age > 30

Commit

T2:

Begin

insert into cs_employees
values (anakin, 70, 500)

Commit

Time

create table cs_employees

 ( name varchar(20),

  age int,

  salary int

 );

Violates our traditional definition of 2PL? 
T1 cannot take a lock on something that 
does not exist!  

Phantom Problem
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Why Phantom Problem?
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• We took read/write locks on existing records, and our locking scheme 
assumed a static system.

• But real-world databases are dynamic. 

• Concurrent transactions can add new records, and our locking scheme does 
not consider insertions, deletions, and updates.

Why Phantom Problem?
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Solutions to Phantom Problem
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• Index locking schemes can help eliminate phantom problem.

• Four key mechanisms in index locking schemes:

• Key-Value Locks

• Gap Locks

• Key-Range Locks

• Hierarchical Locking

Index Locking Schemes
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• Locks that cover a single key-value pair in an index → Standard Locks.

• For non-existent key-value pairs, we would need virtual keys.

Key-Value Locks

6 8 10 12B+-tree Leaf Nodes
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• Locks that cover a single key-value pair in an index → Standard Locks.

• For non-existent key-value pairs, we would need virtual keys.

Key-Value Locks

6 8 10 12

Update 10 → Lock 10.

B+-tree Leaf Nodes
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• Locks acquired on empty slots or gaps in the index.

• Gaps are like missing possible keys in the index.

Gap Locks

6 8 10 12B+-tree Leaf Nodes



23

• Locks acquired on empty slots or gaps in the index.

• Gaps are like missing possible keys in the index.

Gap Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock on 
gap between 10-12.
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• Locks acquired on empty slots or gaps in the index.

• Gaps are like missing possible keys in the index.

• Once a gap lock is taken, only the locking transaction can modify the gap.

Gap Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock on 
gap between 10-12.
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• Locks that cover a key and a gap → Key-lock + Gap-lock.

Key-Range Locks

6 8 10 12B+-tree Leaf Nodes
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• Locks that cover a key and a gap → Key-lock + Gap-lock.

Key-Range Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock from 10-12.
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• Locks that cover a key and a gap → Key-lock + Gap-lock.

Key-Range Locks

6 8 10 12B+-tree Leaf Nodes

Say, we want to take a lock from 10-12.
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• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes
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• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.
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• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

SIXT1

XT1
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• Allow a transaction to acquire key-range locks in a wider variety of modes.

• Remember the locking granularity matrix.

Hierarchical Locks

6 8 10 12B+-tree Leaf Nodes

Say, T1 wants to read all numbers from 6 to 12 (excluding 12) and update 10 to 12.

Say, T2 wants to read all numbers from 6 to 8.

XT1

IST2

SIXT1
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Weaker Levels of Isolation
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• Serializability permits programmers to ignore concurrency issues. 

• But enforcing serializability restricts opportunities for concurrency and limits 
performance. 

• Solution? → Use a weaker level of consistency to improve scalability.

Weaker Levels of Isolation
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• Isolation Levels control the extent to which a transaction is exposed to the 
actions of other concurrent transactions. 

• Providing greater concurrency leads to several challenges:

• Dirty Reads (W-R)

• Unrepeatable Reads (R-W)

• Lost Updates (W-W)

• Phantom Reads

Weaker Levels of Isolation
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• Serializable: no phantoms, all reads repeatable, no dirty reads. 

Weaker Levels of Isolation

Isolation
(High → Low)
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• Serializable: no phantoms, all reads repeatable, no dirty reads. 

• Repeatable Reads: phantoms may happen. 

Weaker Levels of Isolation

Isolation
(High → Low)
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• Serializable: no phantoms, all reads repeatable, no dirty reads. 

• Repeatable Reads: phantoms may happen. 

• Read Committed: phantoms, unrepeatable reads, and lost updates 
may happen. 

Weaker Levels of Isolation

Isolation
(High → Low)
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• Serializable: no phantoms, all reads repeatable, no dirty reads. 

• Repeatable Reads: phantoms may happen. 

• Read Committed: phantoms, unrepeatable reads, and lost updates 
may happen. 

• Read Uncommitted: all anomalies may happen.

Weaker Levels of Isolation

Isolation
(High → Low)
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• Serializable: Strong Strict 2PL with phantom protection (example 
through use of index locks)

• Repeatable Reads: Same as above, but without phantom 
protection. 

• Read Committed: Same as above, but S-Locks are released 
immediately.

• Read Uncommitted: Same as above but allows dirty reads (no S-
Locks).

Weaker Levels of Isolation

Isolation
(High → Low)



Multi-Version Concurrency Control

40
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• The DBMS maintains multiple physical versions of each record in the 
database. 

• When a transaction reads a record, it reads the newest version that existed 
when the transaction started.

• When a transaction writes/updates a record, the DBMS creates a new 
version of that record.

Multi-Version Concurrency Control
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• In MVCC, 

• Writers do not block readers. 

• Readers do not block writers.

• Read-only transactions can read from a consistent snapshot without 
acquiring locks.

• MVCC uses timestamps to determine visibility.

• MVCC provides support for time-travel queries if you skip doing garbage 
collection.

• Run this query on the database state 2 weeks ago.

Multi-Version Concurrency Control
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• How does MVCC work?

Multi-Version Concurrency Control
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• How does MVCC work?

• For each transaction:

• Create a new version on write.

• Assign a begin timestamp and end timestamp.

• End timestamp of previous version = begin timestamp of new version.

• Remember, we will still try to maintain isolation.

• A concurrent transaction should not see uncommitted versions.

• Concurrent transactions should read only committed versions.

• View uncommitted versions as written in the local/logical space.

Multi-Version Concurrency Control
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100

Database
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

At start of the transaction get a begin timestamp.
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

Next, read the latest version from the database.
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

TS(T2) = 2

Begin timestamp for T2.
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

A1 200

Database

TS(T1) = 1

TS(T2) = 2

Create a new version for T2.
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Begin Timestamp for the new version of A is T2’s begin timestamp.
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Set end Timestamp for the previous.
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

But how would a future transaction know which version should it read or 
which is the committed version?
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Maintain transaction status table!

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

Assume a new transaction T3 arrives at this moment and wants to read A, which 
version should it read?

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

If T3 is allowed to read only committed changes, then version A0, and if 
uncommitted changes are allowed then A1.

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

T1 commits

Object Timestamp Status

T2 2 Active

Transaction Status
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Example 1

T1:

Begin
read(A)

read(A)
Commit

T2:

Begin
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 2

A1 200 2

Database

TS(T1) = 1

TS(T2) = 2

T2 commits.

Object Timestamp Status

Transaction Status
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

Object Timestamp Status

T1 1 Active

Transaction Status
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0

Database

TS(T1) = 1

Object Timestamp Status

T1 1 Active

Transaction Status
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

Object Timestamp Status

T1 1 Active

Transaction Status

New version due to write operation.
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

What version will T2 read?
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

T2 will read version A0 because A1 is not committed yet as T1 is still Active!
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

What happens now?
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

This write operation should wait otherwise T2 will create a conflicting version.



66

Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

Essentially, T2 is not allowed to create any version until T1 commits!
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Active

T2 2 Active

Transaction Status

T1 reads version A1 as it is local to T1.
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

T1 commits and now we allow T2 to continue running.
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1 2

A2 200 2

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

T1 commits and now we allow T2 to continue running.
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1 2

A2 200 2

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

Is this serializable?
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Example 2

T1:

Begin
read(A)
write(A)

read(A)
Commit

T2:

Begin
read(A)
write(A)

Commit

Time

Object Value Begin-TS End-TS

A0 100 0 1

A1 200 1 2

A2 200 2

Database

TS(T1) = 1

TS(T2) = 2

Object Timestamp Status

T1 1 Committed

T2 2 Active

Transaction Status

Is this serializable? No, because T2 reads an older version.
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Snapshot Isolation

• When a transaction starts, it sees a consistent snapshot of the database. 

• Snapshot of the database that existed when that the transaction started. 

• No uncommitted writes from active transactions are visible.

• If two transactions update the same object, then the first writer does not wait. 

• SI sometimes faces the Write Skew Anomaly.
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Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White
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Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White



75

Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White
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Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White
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Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White
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Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

But this is not serializable.
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Write Skew Anomaly

T1 → Turn all balls Black

T2 → Turn all balls White

This is serializable.
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MVCC Design Decisions

• What do we need to consider while designing an MVCC scheme?
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MVCC Design Decisions

• What do we need to consider while designing an MVCC scheme?

• Preventing Write Skew

• Version Storage 

• Garbage Collection 

• Index Management 

• Deletes
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Concurrency Control Protocol

• Approach 1: Timestamp Ordering

• Assign transactions timestamps that determine serial order. 

• Approach 2: Optimistic Concurrency Control 

• Three-phase protocol that we learnt in T/O lecture.

• Use private workspace for new versions. 

• Approach 3: Two-Phase Locking

• Transactions acquire lock on physical version before they can read/write a 
logical tuple.
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Version Storage

• How to store versions?
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Version Storage

• How to store versions?

• The DBMS uses the record’s pointer field to create a version chain per logical 
tuple.

• This allows the DBMS to find the version that is visible to a particular 
transaction at runtime. 

• Indexes always point to the head of the chain. 

• Different storage schemes determine where/what to store for each version.
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Garbage Collection

• How to garbage collect old versions?
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Garbage Collection

• How to garbage collect old versions?

• The DBMS needs to remove reclaimable physical versions from the database 
over time.

• No active transaction in the DBMS should be able to see a version going to be 
garbage collected. 

• For example: A version was created by an aborted transaction should be 
garbage collected. 

• Two additional design decisions:

• How to look for expired versions? 

• How to decide when it is safe to reclaim memory?
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