
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 2:

Structured Query Language

Assignment Groups

• Assignments to be done in groups of at most 4 members.

• Start forming your groups.

• Two options:

• Send me your group details by Oct 3, 2025 by 5pm PST.

• Or, If you cannot form a group, then send me a mail by Oct 3, 2025 by 5pm PST.

2

Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 2:

Structured Query Language

Last Class

• What is a Database?

• Relational Algebra.

4

SQL

• Helps to query, modify, or add constraints to a database.

• Originally designed by IBM and marketed as Sequel.

• SQL has several parts:

• Data Definition Language

• Data Manipulation Language

• Integrity → Helps to add integrity constraints to the database.

• View Definition → Helps to define views.

• Transaction control → Helps to define the beginning and end of transactions.

5

SQL Data Definition

6

SQL Data Definition

• SQL DDL helps to specify:

• Schema for each relation (table).

• Types of values for each attribute.

• Integrity constraints on attributes.

• Indices on a relation.

• Security/authorization/physical storage structure of a relation.

7

Basic Types in SQL

8

Basic Types in SQL

• char(n) – fixed length character string of length n.

• Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

9

Basic Types in SQL

• char(n) – fixed length character string of length n.

• Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

• varchar(n) – variable length character string with maximum length n.

10

Basic Types in SQL

• char(n) – fixed length character string of length n.

• Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

• varchar(n) – variable length character string with maximum length n.

• int / smallint (small integer) – machine dependent size.

11

Basic Types in SQL

• char(n) – fixed length character string of length n.

• Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

• varchar(n) – variable length character string with maximum length n.

• int / smallint (small integer) – machine dependent size.

• numeric(p,d) – fixed point number with total p digits (plus a sign) and d of the p

digits after the decimal point.

12

Basic Types in SQL

• char(n) – fixed length character string of length n.

• Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

• varchar(n) – variable length character string with maximum length n.

• int / smallint (small integer) – machine dependent size.

• numeric(p,d) – fixed point number with total p digits (plus a sign) and d of the p

digits after the decimal point.

• float(n) – floating-point number with precision of at least n digits.

13

Basic Types in SQL

• char(n) – fixed length character string of length n.

• Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

• varchar(n) – variable length character string with maximum length n.

• int / smallint (small integer) – machine dependent size.

• numeric(p,d) – fixed point number with total p digits (plus a sign) and d of the p

digits after the decimal point.

• float(n) – floating-point number with precision of at least n digits.

• null a special value, available to all the types, indicates an absent value.

• Suppose you don’t know what value to fill for an attribute in a tuple → use null. 14

15

Create Table

create table cs_employees

 (name varchar(20),

 age int,

 title varchar(30)

);

16

Create Table

create table cs_employees

 (name varchar(20),

 age int,

 title varchar(30),

);

17

Create Table: Specifying a Primary Key

create table cs_employees

 (name varchar(20),

 age int,

 title varchar(30),

 primary key (name)

);

18

Create Table: Specifying a Primary Key

What are the properties of primary key attribute?

create table cs_employees

 (name varchar(20),

 age int,

 title varchar(30),

 primary key (name)

);

19

Create Table: Specifying a Primary Key

The values of primary key attribute are by default forced to be non

null and unique.

create table courses

 (course_name varchar(30),

 quarter int,

 year int,

);

20

How about a Primary Key here?

Assume no attribute has unique values!

create table courses

 (course_name varchar(30),

 quarter int,

 year int,

 primary key (course_name, quarter, year)

);

21

Multiple Attributes as a Primary Key

When no single attribute can guarantee a non null and unique

value, then multiple attributes can together serve as a primary key.

create table courses

 (course_name varchar(30),

 quarter int,

 year int,

 primary key (course_name, quarter, year)

);

22

How to constraint an Attribute to be not Null

create table courses

 (course_name varchar(30),

 quarter int not null,

 year int,

 primary key (course_name, quarter, year)

);

23

Not Null Constraint on an Attribute

Now, the quarter attribute can not have a missing value!

Create Table: Specifying a Foreign Key

create table cs_employees
 (name varchar(20),
 age int,
 title varchar(30),
 primary key (name)
);

25

Create Table: Specifying a Foreign Key

This foreign-key states that for each
row in the courses relation, the value
for name attribute must exist in the
primary key attribute (name) of the cs-
employees relation.create table courses

 (course_name varchar(30),
 quarter int not null,
 year int,
 primary key (course_name, quarter, year),
 foreign key (name) references cs-employees
);

26

Inserting and Deleting Rows

insert into cs_employees

 values (‘thanos’, 100, ‘prof’);

insert into cs_employees

 values (‘voldemort’, 70,);

delete from cs_employees

drop table cs_employees

27

Inserting and Deleting Rows

Null value for this attribute is allowed!

Delete all rows from this table.

Delete table.

28

SQL Querying: Reading data from Database

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

cs-employees

select title

 from cs_employees;

29

SQL Querying: Reading data from Database

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

title

Assoc Prof

Assoc Prof

Prof

Asst Prof

Prof

output

All the titles get displayed, even duplicates.

cs-employees

select title

 from cs_employees;

30

SQL Querying: Reading data from Database

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

title

Assoc Prof

Assoc Prof

Prof

Asst Prof

Prof

output

All the titles get displayed, even duplicates.

cs-employees

What if I want only distinct titles outputted?

select distinct title

 from cs_employees;

31

SQL Querying: Reading data from Database

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

title

Assoc Prof

Prof

Asst Prof

output

Only distinct titles get displayed.

cs-employees

32

What if I want some arithmetic on output?

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Say I want to print the 2*age?

select name, age*2, title

 from cs_employees;

33

Select command + arithmetic operators

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

output

All attributes are same except the age
column, which is multiplied by 2.

name age title

Voldemort 140 Assoc Prof

Anakin 40 Assoc Prof

Kang 40 Prof

Gru 90 Asst Prof

Thanos 200 Prof

cs-employees

34

Select with Condition

select name

 from cs_employees

 where age > 45;

35

Select with Condition (where clause)

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

output

Any row where age is less than or equal to 45 is ignored.
name

Voldemort

Thanos

cs-employees

36

Select with Multiple Relations

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees courses

select name, course

 from cs_employees, courses;

37

Select with Multiple Relations

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name course

Voldemort 1100

Anakin 1100

Kang 1100

…

Voldemort 4510

…

Voldemort 3311

…

Voldemort 1200

…

Voldemort 6100

All combinations of rows
like relational algebra’s
product operation.

select name, course

 from cs_employees join courses;

38

Select with Multiple Relations – Join Operation

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name course

Voldemort 1100

Anakin 1100

Kang 1100

…

Voldemort 4510

…

Voldemort 3311

…

Voldemort 1200

…

Voldemort 6100

This query and the
one in previous slide
are equivalent!

select name, course

 from cs_employees join courses;

39

Select with Multiple Relations – Join Operation

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name course

Voldemort 1100

Anakin 1100

Kang 1100

…

Voldemort 4510

…

Voldemort 3311

…

Voldemort 1200

…

Voldemort 6100

A lot of entries don’t
make sense here.

Can we have a
correct mapping?

select name, course

 from cs_employees, courses

 where cs_employees.title = courses.title;

40

Select with Multiple Relations

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name course

Anakin 1100

Voldemort 1100

Anakin 4510

Voldemort 4510

Gru 1200

Kang 3311

Thanos 3311

Kang 6100

Thanos 6100

Restricted combinations
of rows using where
clause.

select name, course

 from cs_employees, courses

 where cs_employees.title = courses.title

 and age > 45;

41

Select with Multiple Relations

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name course

Voldemort 1100

Voldemort 4510

Thanos 3311

Thanos 6100

This query, which we just saw is also termed as “natural join” in query world.

select name, course

 from cs_employees, courses

 where cs_employees.title = courses.title;

As it is so common to perform operations on multiple relations with common
fields, SQL provides the ”natural join” operation, which does the same task.

select name, course

 from cs_employees natural join courses;

42

Natural Join

Let’s say we have these modified tables.

select name, course

 from cs_employees natural join courses;

Notice that there are two common columns!

43

Natural Join

name age title salary

Voldemort 70 Assoc Prof 600

Anakin 20 Assoc Prof 500

Kang 20 Prof 200

Gru 45 Asst Prof 400

Thanos 100 Prof 400

course students title salary

1100 200 Assoc Prof 500

4510 35 Assoc Prof 600

3311 55 Prof 400

1200 100 Asst Prof 400

6100 5 Prof 200

cs_employees

courses

output

name course

Anakin 1100

Voldemort 4510

Thanos 3311

Gru 1200

Kang 6100

select name, course from cs_employees natural join courses natural join salary;

 and

select name, course from cs_employees natural join courses, salary

 where salary.students = courses.students.
44

Are these queries same or different?

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees courses

name students salary

Voldemort 35 500

Anakin 55 600

Kang 5 400

Gru 100 400

Thanos 200 200

salary

select name, course from cs_employees natural join courses natural join salary;

 and

select name, course from cs_employees natural join courses, salary

 where salary.students = courses.students.
45

Are these queries same or different?

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees courses

name students salary

Voldemort 35 500

Anakin 55 600

Kang 5 400

Gru 100 400

Thanos 200 200

salary

select name, course

 from cs_employees natural join courses natural join salary;

46

Natural Join with Three Relations

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees courses

output

name course

Voldemort 4510

Gru 1200

Kang 6100

name students salary

Voldemort 35 500

Anakin 55 600

Kang 5 400

Gru 100 400

Thanos 200 200

salary

First joins these two,
which results in a
table with 6 columns.

Then joins the result of
previous join with salary.
Notice 2 common columns.

select name, course

 from cs_employees natural join courses, salary

 where salary.students = courses.students.

47

Natural Join with Three Relations

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees courses

output

name course

Voldemort 4510

Anakin 4510

Voldemort 1100

Anakin 1100

Gru 1200

Kang 6100

Thanos 6100

name students salary

Voldemort 35 500

Anakin 55 600

Kang 5 400

Gru 100 400

Thanos 200 200

salary

• What if we want to capture the tuples skipped from the result of join operation?

48

Missing from Join

• Helps to capture missing tuples from the result of join operation.

• Three flavors:

• Left Outer Join – tuples missing from the left relation.

• Right Outer Join – tuples missing from the left relation.

• Full Outer Join – tuples missing from either of the relations.

49

Outer Join

select name, course

from cs_employees natural right outer join courses;

50

Natural Right Outer Join

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

2100 200 Lecturer

cs_employees

courses

output

name course

Anakin 1100

Voldemort 1100

Anakin 4510

Voldemort 4510

Gru 1200

Kang 3311

Thanos 3311

Kang 6100

Thanos 6100

NULL 2100

Null entry for course 2100
because it has no
corresponding match in
cs_employees table.

select name, course

from cs_employees natural join courses;

51

Attribute Name Change?

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name course

Anakin 1100

Voldemort 1100

Anakin 4510

Voldemort 4510

Gru 1200

Kang 3311

Thanos 3311

Kang 6100

Thanos 6100

Say I do not like in my
display the attribute “name”
and want it to be outputted
as “Instructor”.

select name as Instructor, course

from cs_employees natural join courses;

52

As Clause – Renaming

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

Instructor course

Anakin 1100

Voldemort 1100

Anakin 4510

Voldemort 4510

Gru 1200

Kang 3311

Thanos 3311

Kang 6100

Thanos 6100

Output rendering

53

Any other benefits of As Clause?

select T.name, S.title

from cs_employees as T natural join courses as S

where age > 45;

54

As Clause – Renaming

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

course students title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

cs_employees

courses

output

name title

Voldemort Assoc Prof

Voldemort Assoc Prof

Thanos Prof

Thanos Prof

Shortening names
of the tables.

select distinct T.name

from cs_employees as T, cs_employees as S

where T.age > S.age and S.name = 'Kang';

55

As Clause – Renaming

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees
output

name

Voldemort

Gru

Thanos

Joker

Helps in self comparisons
in a relations.

For ex: all employees with
age greater than Kang.

56

String matching

Makes use of a like operator.

select name from cs_employees

where title like ‘Assoc%’;

57

String matching (%)

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

name

Voldemort

Anakin

All names with title
starting with Assoc.

Makes use of a like operator.

select name from cs_employees

where title like ‘P_ _ _’;

58

String matching (_)

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

name

Kang

Thanos

All names with title starting
with P and have at most
three more characters.

Makes use of a like operator.

select name from cs_employees

where title like ‘Ad%t%’;

59

String matching (%)

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output
name

Joker

You can include multiple
matching operators.

Makes use of a like operator.

select name from cs_employees

where title like ‘Assoc\%Prof’;

60

String matching (\)

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

61

How to print all the columns?

Asterix (*) when used with select clause prints

all the attributes.

select * from cs_employees

where title like ‘Assoc%’;

62

Select *

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

63

Filtering for Null Values

As some attributes may have NULL values, we can

filter our results using is null or not null.

select * from cs_employees

where title is null;

select * from cs_employees

where title is not null;

64

Null Values

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 NULL

cs_employees

Take a collection of values and return a single value.

• Average (avg)

• Minimum (min)

• Maximum (max)

• Total (sum)

• Count (count)

65

Aggregate Functions

select avg(age) from cs_employees

group by title;

66

Average Function

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

avg(age)

45

select title, avg(age) from cs_employees

group by title;

67

Average – Group By Clause

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

title avg(age)

Assoc Prof 45

Prof 60

Asst Prof 45

Adjunct Prof 66

We can print averages for
each group; grouping sets of
tuples.

select title, avg(age) from cs_employees

group by title

having avg(age) > 50;

68

Average – Group By, Having

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

title avg(age)

Prof 60

Adjunct Prof 66

Having is like where clause
but for placing constraints
on groups.

select title, sum(age) from cs_employees

group by title;

69

Sum Function

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

title avg(age)

Assoc Prof 90

Prof 120

Asst Prof 45

Adjunct Prof 66

We can print averages for
each group; grouping sets of
tuples.

Query within a query!

select name from cs_employees

where title in

(select title from courses where course > 2000);

70

Nested Subqueries

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

name

Voldemort

Anakin

Kang

Thanos

The result of evaluating the inner
query serves as the constraint for
the outer query.

Notice the matching field names!

Query within a query!

select name from cs_employees

where title not in

(select title from courses where course > 2000);

71

Nested Subqueries

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

name

Gru

Joker

“Not in” works as opposite to “in”.

All operation.

select name from cs_employees

where age > all

(select age from cs_employees

where title like 'A%');

72

Nested Subqueries

name age title

Voldemort 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct

cs_employees

output

name

Thanos

Is there some professor who has age
greater than all the non-professors.

Functions and Procedures

73

• SQL allows you to create your own functions and procedures.

create function dept_count(dept_name varchar(20))
 returns integer
 begin
 declare d_count integer;
 select count(*) into d_count
 from instructor
 where instructor.dept_name = dept_name
 return d_count;
 end

A function that, given the name of a department, returns
the count of the number of instructors in that department

Self-Reading Task

74

• Read about how to create procedures and calling functions and procedures.

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment Groups
	Slide 3: Database Processing CS 451 / 551
	Slide 4: Last Class
	Slide 5: SQL
	Slide 6: SQL Data Definition
	Slide 7: SQL Data Definition
	Slide 8: Basic Types in SQL
	Slide 9: Basic Types in SQL
	Slide 10: Basic Types in SQL
	Slide 11: Basic Types in SQL
	Slide 12: Basic Types in SQL
	Slide 13: Basic Types in SQL
	Slide 14: Basic Types in SQL
	Slide 15: Create Table
	Slide 16: Create Table
	Slide 17: Create Table: Specifying a Primary Key
	Slide 18: Create Table: Specifying a Primary Key
	Slide 19: Create Table: Specifying a Primary Key
	Slide 20: How about a Primary Key here?
	Slide 21: Multiple Attributes as a Primary Key
	Slide 22: How to constraint an Attribute to be not Null
	Slide 23: Not Null Constraint on an Attribute
	Slide 24: Create Table: Specifying a Foreign Key
	Slide 25: Create Table: Specifying a Foreign Key
	Slide 26: Inserting and Deleting Rows
	Slide 27: Inserting and Deleting Rows
	Slide 28: SQL Querying: Reading data from Database
	Slide 29: SQL Querying: Reading data from Database
	Slide 30: SQL Querying: Reading data from Database
	Slide 31: SQL Querying: Reading data from Database
	Slide 32: What if I want some arithmetic on output?
	Slide 33: Select command + arithmetic operators
	Slide 34: Select with Condition
	Slide 35: Select with Condition (where clause)
	Slide 36: Select with Multiple Relations
	Slide 37: Select with Multiple Relations
	Slide 38: Select with Multiple Relations – Join Operation
	Slide 39: Select with Multiple Relations – Join Operation
	Slide 40: Select with Multiple Relations
	Slide 41: Select with Multiple Relations
	Slide 42: Natural Join
	Slide 43: Natural Join
	Slide 44: Are these queries same or different?
	Slide 45: Are these queries same or different?
	Slide 46: Natural Join with Three Relations
	Slide 47: Natural Join with Three Relations
	Slide 48: Missing from Join
	Slide 49: Outer Join
	Slide 50: Natural Right Outer Join
	Slide 51: Attribute Name Change?
	Slide 52: As Clause – Renaming
	Slide 53: Any other benefits of As Clause?
	Slide 54: As Clause – Renaming
	Slide 55: As Clause – Renaming
	Slide 56: String matching
	Slide 57: String matching (%)
	Slide 58: String matching (_)
	Slide 59: String matching (%)
	Slide 60: String matching (\)
	Slide 61: How to print all the columns?
	Slide 62: Select *
	Slide 63: Filtering for Null Values
	Slide 64: Null Values
	Slide 65: Aggregate Functions
	Slide 66: Average Function
	Slide 67: Average – Group By Clause
	Slide 68: Average – Group By, Having
	Slide 69: Sum Function
	Slide 70: Nested Subqueries
	Slide 71: Nested Subqueries
	Slide 72: Nested Subqueries
	Slide 73: Functions and Procedures
	Slide 74: Self-Reading Task

