Database Processing

Lecture 2:

CS 451 /551

Structured Query Language

e
(‘
\ Z

Database
Processing

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment Groups

* Assignments to be done in groups of at most 4 members.
* Start forming your groups.

* Two options:
* Send me your group details by Oct 3, 2025 by 5pm PST.
* Or, If you cannot form a group, then send me a mail by Oct 3, 2025 by 5pm PST.

Database Processing

CS 451 /551

Lecture 2:

Structured Query Language

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Last Class

e What is a Database?

* Relational Algebra.

SOQL

* Helps to query, modify, or add constraints to a database.
* Originally designed by IBM and marketed as Sequel.

* SQL has several parts:
 Data Definition Language
* Data Manipulation Language
* Integrity = Helps to add integrity constraints to the database.
* View Definition = Helps to define views.
* Transaction control = Helps to define the beginning and end of transactions.

SQL Data Definition

SQL Data Definition

* SQL DDL helps to specity:
* Schema for each relation (table).
* Types of values for each attribute.
* Integrity constraints on attributes.
* Indices on a relation.

* Security/authorization/physical storage structure of a relation.

Basic Types in SQL

Basic Types in SQL

* char(n) - fixed length character string of length n.

 Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

Basic Types in SQL

* char(n) - fixed length character string of length n.

 Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

* varchar(n) — variable length character string with maximum length n.

Basic Types in SQL

* char(n) - fixed length character string of length n.

 Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.
* varchar(n) — variable length character string with maximum length n.

* int / smallint (small integer) — machine dependent size.

Basic Types in SQL

char(n) - fixed length character string of length n.

 Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.
varchar(n) — variable length character string with maximum length n.
int / smallint (small integer) — machine dependent size.

numeric(p,d) — fixed point number with total p digits (plus a sign) and d of the p
digits after the decimal point.

Basic Types in SQL

* char(n) - fixed length character string of length n.

 Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

varchar(n) — variable length character string with maximum length n.

int / smallint (small integer) — machine dependent size.

* numeric(p,d) — fixed point number with total p digits (plus a sign) and d of the p
digits after the decimal point.

* float(n) - floating-point number with precision of at least n digits.

Basic Types in SQL

* char(n) - fixed length character string of length n.

 Say char(10) and you store a string “Alice”, then 5 spaces are added before storing.

varchar(n) — variable length character string with maximum length n.

int / smallint (small integer) — machine dependent size.

* numeric(p,d) — fixed point number with total p digits (plus a sign) and d of the p
digits after the decimal point.

* float(n) - floating-point number with precision of at least n digits.

 null a special value, available to all the types, indicates an absent value.

* Suppose you don’t know what value to fill for an attribute in a tuple = use null.

Create Table

Create Table

create table cs_employees
(name varchar(20),
age int,

title varchar(30)

Create Table: Specifying a Primary Key

create table cs_employees

(@e varchar(20),

age int,

title varchar(30),

Create Table: Specifying a Primary Key

create table cs_employees
(name varchar(20),
age int,
title varchar(30),
primary key (name) ¢

What are the properties of primary key attribute?

Create Table: Specifying a Primary Key

create table cs_employees
(name varchar(20),
age int,
title varchar(30),

primary key (name)

The values of primary key attribute are by default forced to be non

null and unique.

How about a Primary Key here?

create table courses

(course_name varchar(30),
quarter int,
year int,

Assume no attribute has unique values!

20

Multiple Attributes as a Primary Key

create table courses

(course_name varchar(30),
quarter int,
year int,

primary key (course_name, quarter, year) < s

When no single attribute can guarantee a non null and unique

value, then multiple attributes can together serve as a primary key.

How to constraint an Attribute to be not Null

create table courses

(course_name varchar(30),
@er int,
year int,

primary key (course_name, quarter, year)

Not Null Constraint on an Attribute

create table courses

(course_name varchar(30),
quarter int not null,
year int,

primary key (course_name, quarter, year)

Now, the quarter attribute can not have a missing value!

Create Table: Specifying a Foreign Key

Create Table: Specifying a Foreign Key

create table cs_employees
(name varchar(20),
age int,
title varchar(30),

: This foreign-key states that for each
primary key (name)

row in the courses relation, the value

); for name attribute must exist in the
primary key attribute (name) of the cs-
create table courses employees relation.
(course_name varchar(30),
quarter int not null,
year int,

primary key (course_name, quarter, year),

foreign key (name) references cs-employees >

);

Inserting and Deleting Rows

Inserting and Deleting Rows

insert into cs_employees

values (‘thanos’, 100, ‘prof”);

insert into cs_employees
values (‘voldemort’, 70,), @=====Null value for this attribute is allowed!

delete from cs_employees == Delete all rows from this table.

drop table cs_employees quummmm— Delete table.

SQL Querying: Reading data from Database

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs-employees

SQL Querying: Reading data from Database

select title

from cs_employees;

output

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

title

Assoc Prof

Assoc Prof

Prof

Asst Prof

Prof

cs-employees

All the titles get displayed, even duplicates.

SQL Querying: Reading data from Database

select title

from cs_employees;

output

title

Assoc Prof

Assoc Prof

Prof

Asst Prof

Prof

name age | title

Voldemort | 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof
Gru 45 Asst Prof
Thanos 100 Prof

cs-employees

All the titles get displayed, even duplicates.

What if I want only distinct titles outputted?

30

SQL Querying: Reading data from Database

select distinct title

from cs_employees;

output
title

Assoc Prof
Prof
Asst Prof

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Only distinct titles get displayed.

cs-employees

What if I want some arithmetic on output?

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Say I want to print the 2*age?

Select command + arithmetic operators

select name, age*2, title

from cs_employees;

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

output
name age | title
Voldemort | 140 Assoc Prof
Anakin 40 Assoc Prof
Kang 40 Prof
Gru 90 Asst Prof
Thanos 200 Prof

cs-employees

All attributes are same except the age
column, which is multiplied by 2.

Select with Condition

Select with Condition (where clause)

select name name age | title

Voldemort | 70 Assoc Prof

m mpl
from cs_employees Anakin 20 Assoc Prof

where age > 45; Kang 0 | Prof
Gru 45 Asst Prof
Thanos 100 Prof
output cs-employees
name
Voldemort Any row where age is less than or equal to 45 is ignored.

Thanos

Select with Multiple Relations

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

36

Select with Multiple Relations

select name, course

output

from cs_employees, courses;

name course
Voldemort 1100
Anakin 1100
Kang 1100
Voldemort 4510
Voldemort 3311
Voldemort 1200
Voldemort 6100

All combinations of rows
like relational algebra’s
product operation.

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

37

Select with Multiple Relations - Join Operation

select name, course

output

from cs_employees join courses;

name course
Voldemort 1100
Anakin 1100
Kang 1100
Voldemort 4510
Voldemort 3311
Voldemort 1200
Voldemort 6100

This query and the
one in previous slide
are equivalent!

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

Select with Multiple Relations - Join Operation

select name, course

output

from cs_employees join courses;

name course
Voldemort 1100
Anakin 1100
Kang 1100
Voldemort 4510
Voldemort 3311
Voldemort 1200
Voldemort 6100

A lot of entries don’t
make sense here.

Can we have a
correct mapping?

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

39

Select with Multiple Relations

select name, course

output

from cs_employees, courses

where@ployee&title = course@

name course
Anakin 1100
Voldemort 1100
Anakin 4510
Voldemort 4510
Gru 1200
Kang 3311
Thanos 3311
Kang 6100
Thanos 6100

Restricted combinations
of rows using where
clause.

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

40

Select with Multiple Relations

select name, course
from cs_employees, courses

where cs_employees.title = courses.title

ge > 45;

course

name
Voldemort 1100
Voldemort 4510
Thanos 3311
Thanos 6100

output

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof
4510 35 Assoc Prof
3311 55 Prof

1200 100 Asst Prof
6100 5 Prof

courses

41

Natural Join

This query, which we just saw is also termed as “natural join” in query world.

select name, course
from cs_employees, courses

where cs_employees.title = courses.title;

As it is so common to perform operations on multiple relations with common
fields, SQL provides the "natural join” operation, which does the same task.

select name, course

from cs_employees natural join courses;

Let’s say we have these modified tables.

select name, course

Notice that there are two common columns!

output

from cs_employees natural join courses;

name course
Anakin 1100
Voldemort 4510
Thanos 3311
Gru 1200
Kang 6100

Natural Join

name age | title salary
Voldemort | 70 Assoc Prof | 600
Anakin 20 Assoc Prof | 500
Kang 20 Prot 200
Gru 45 Asst Prof | 400
Thanos 100 | Prof 400
cs_employees
course | students | title salary
1100 200 Assoc Prof | 500
4510 35 Assoc Prof | 600
3311 55 Prof 400
1200 100 Asst Prof 400
6100 5 Prof 200
courses

43

Are these queries same or different?

name age | title course | students | title name students salary
Voldemort | 70 Assoc Prof 1100 200 Assoc Prof Voldemort | 35 500
Anakin 20 Assoc Prof 4510 35 Assoc Prof Anakin 55 600
Kang 20 Prof 3311 55 Prof Kang 5 400
Gru 45 Asst Prof 1200 100 Asst Prof Gru 100 400
Thanos 100 | Prof 6100 5 Prof Thanos 200 200
cs_employees courses salary

select name, course from cs_employees natural join courses natural join salary;
and

select name, course from cs_employees natural join courses, salary

where salary.students = courses.students.

Are these queries same or different?

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

name students salary

Voldemort | 35 500

Anakin 55 600

Kang 5 400

Gru 100 400

Thanos 200 200
salary

select name, course from cs_employees natural join courses natural join salary;

select name, course from cs_employees natural join courses, salary

and

where salary.students = courses.students.

piffer

e“‘v‘.

45

Natural Join with Three Relations

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

select name, course

frorr@loyees natura

output

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

name students salary

Voldemort | 35 500

Anakin 55 600

Kang 5 400

Gru 100 400

Thanos 200 200
salary

] join coursenatural join salary;

>

——— .
name course
Voldemort 4510
Gru 1200
Kang 6100

natual o cour

N\

First joins these two,
which results in a
table with 6 columns.

N\

Then joins the result of

previous join with salary.

Notice 2 common columns.

46

Natural Join with Three Relations

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

select name, course

from cs_employees natural join courses, salary

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof
courses

where salary.students = courses.students.

name students salary
Voldemort | 35 500
Anakin 55 600
Kang 5 400
Gru 100 400
Thanos 200 200
salary

name course

Voldemort 4510

Anakin 4510

Voldemort 1100

output - akin 1100

Gru 1200

Kang 6100

Thanos 6100 4

Missing from Join

* What it we want to capture the tuples skipped from the result of join operation?

Outer Join

 Helps to capture missing tuples from the result of join operation.

* Three flavors:
* Left Outer Join — tuples missing from the left relation.

* Right Outer Join — tuples missing from the left relation.

* Full Outer Join - tuples missing from either of the relations.

Natural Right Outer Join

select name, course

from cs_employees natural right outer join courses;

output

name course
Anakin 1100
Voldemort 1100
Anakin 4510
Voldemort 4510
Gru 1200
Kang 3311
Thanos 3311
Kang 6100
Thanos 6100
NULL 2100

Null entry for course 2100
because it has no
corresponding match in
cs_employees table.

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs_employees

course | students | title

1100 200 Assoc Prof
4510 35 Assoc Prof
3311 55 Prof

1200 100 Asst Prof
6100 5 Prof

2100 200 Lecturer

courses

50

Attribute Name Change?

select name, course

from cs_employees natural join courses;

output

name course
Anakin 1100
Voldemort 1100
Anakin 4510
Voldemort 4510
Gru 1200
Kang 3311
Thanos 3311
Kang 6100
Thanos 6100

Say I do not like in my
display the attribute “name
and want it to be outputted
as “Instructor”.

144

name age | title

Voldemort | 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct
cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

courses

51

As Clause — Renaming

selectihame as Instructor) course

from cs_employees natural join courses;

output

Instructor course
Anakin 1100
Voldemort 1100
Anakin 4510
Voldemort 4510
Gru 1200
Kang 3311
Thanos 3311
Kang 6100
Thanos 6100

Output rendering

name age | title

Voldemort | 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct
cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

courses

52

Any other benefits of As Clause?

As Clause — Renaming

select T.name, S.title

from cs_employees as T natural join courses as S

where age > 45;

output

name

title

Voldemort

Assoc Prof

Voldemort

Assoc Prof

Thanos

Prof

Thanos

Prof

Shortening names
of the tables.

name age | title

Voldemort | 70 Assoc Prof

Anakin 20 Assoc Prof

Kang 20 Prof

Gru 45 Asst Prof

Thanos 100 Prof

Joker 66 Adjunct
cs_employees

course | students | title

1100 200 Assoc Prof

4510 35 Assoc Prof

3311 55 Prof

1200 100 Asst Prof

6100 5 Prof

courses

54

As Clause — Renaming

select distinct T.name name age | title
Voldemort | 70 Assoc Prof
from cs_employees as T, cs_employees as S o P U
nakxkin SSOC I'TO
where T.age > S.age and S.name = 'Kang; Kang 20 | Prof
Gru 45 Asst Prof
am Thanos 100 | Prof
ame Helps in self comparisons Joker 66 Adjunct
Voldemort in a relations. cs_employees
output | Gru B
Thanos For ex: all employees with
Joker age greater than Kang.

String matching

String matching (%)

Makes use of a like operator.

select name from cs_employees

where title like ‘Assoc%’;

output

name

Voldemort

Anakin

All names with title
starting with Assoc.

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 Adjunct

cs_employees

String matching ()

Makes use of a like operator. name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
select name from cs_employees Kang 0 | Prof
where title like ‘'P__ ’; Gru 45 | Asst Prof
Thanos 100 | Prof
Joker 66 Adjunct
cs_employees
name All names with title starting
output |Kang with P and have at most
Thanos three more characters.

String matching (%)

Makes use of a like operator. name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
select name from cs_employees Kang 20 | Prof
where title like “Ad%t%’; Gru 45 | Asst Prof
Thanos 100 | Prof
Joker 66 Adjunct

output

name

Joker

You can include multiple
matching operators.

cs_employees

String matching (\)

Makes use of a like operator.

select name from cs_employees
where title like ‘Assoc\%Prof’;

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 Adjunct

cs_employees

How to print all the columns?

Asterix (¥*) when used with select clause prints

all the attributes.

select * from cs_employees

where title like ‘Assoc%’;

output

Select *

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 Adjunct

cs_employees

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof

62

Filtering for Null Values

Null Values

As some attributes may have NULL values, we can

filter our results using is null or not null.
select * from cs_employees

where title is null;

select * from cs_employees

where title is not null;

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 NULL

cs_employees

Aggregate Functions

Take a collection of values and return a single value.

* Average (avg)

* Minimum (min)
 Maximum (max)
 Total (sum)

e Count (count)

Average Function

select avg(age) from cs_employees

group by title;

output

avg(age)
45

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 Adjunct

cs_employees

Average — Group By Clause

select title, avg(age) from cs_employees name age | title
. Voldemort | 70 Assoc Prof
group by title; _
Anakin 20 Assoc Prof
Kang 20 Prof
Gru 45 Asst Prof
Thanos 100 Prof
Joker 66 Adjunct
cs_employees
output
title avg(age)
Assoc Prof 45
Prof 60 We can print averages for

each group; grouping sets of
tuples.

Asst Prof 45
Adjunct Prof | 66

Average — Group By, Having

select title, avg(age) from cs_employees name age | title
: Voldemort | 70 Assoc Prof
group by title .
Anakin 20 Assoc Prof
haVing an(age) > 50; Kang 20 Prof
Gru 45 Asst Prof
Thanos 100 | Prof
Joker 66 Adjunct
cs_employees
output
title avg(age) Having is like where clause
Prof 60 but for placing constraints

Adjunct Prof | 66 on groups.

Sum Function

select title, sum(age) from cs_employees name age | title
: Voldemort | 70 Assoc Prof
group by title; _
Anakin 20 Assoc Prof
Kang 20 Prof
Gru 45 Asst Prof
Thanos 100 | Prof
Joker 66 Adjunct
cs_employees
output
title avg(age)
Assoc Prof |90 .
Prof 120 We can print averages for
each group; grouping sets of
Asst Prof 45 tuples.
Adjunct Prof | 66

Nested Subqueries

Query within a query!

select name from cs_employees
where title in

(select title from courses where course > 2000);

output
name . .
The result of evaluating the inner

Voldemort .

_ query serves as the constraint for
Anakin the outer query.
Kang
Thanos Notice the matching field names!

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 Adjunct

cs_employees

Nested Subqueries

Query within a query! name age | title
Voldemort | 70 Assoc Prof

Anakin 20 Assoc Prof

select name from cs_employees Kang 20 | Prof
where title not in Gru 45 | Asst Prof
: Thanos 100 | Prof
(select title from courses where course > 2000); .
Joker 66 Adjunct
cs_employees
output

name

Gru “Not in” works as opposite to “in”.

Joker

Nested Subqueries

All operation.

select name from cs_employees
where age > all

(select age from cs_employees
where title like 'A%");

output

name age | title
Voldemort | 70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

Joker 66 Adjunct

name Is there some professor who has age
Thanos greater than all the non-professors.

cs_employees

Functions and Procedures

* SQL allows you to create your own functions and procedures.

create function dept_count(dept_name varchar(20))
returns integer
begin
declare d_count integer;
select count(*) into d_count
from instructor
where instructor.dept_name = dept_name
return d_count;
end

A function that, given the name of a department, returns
the count of the number of instructors in that department

Self-Reading Task

* Read about how to create procedures and calling functions and procedures.

74

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment Groups
	Slide 3: Database Processing CS 451 / 551
	Slide 4: Last Class
	Slide 5: SQL
	Slide 6: SQL Data Definition
	Slide 7: SQL Data Definition
	Slide 8: Basic Types in SQL
	Slide 9: Basic Types in SQL
	Slide 10: Basic Types in SQL
	Slide 11: Basic Types in SQL
	Slide 12: Basic Types in SQL
	Slide 13: Basic Types in SQL
	Slide 14: Basic Types in SQL
	Slide 15: Create Table
	Slide 16: Create Table
	Slide 17: Create Table: Specifying a Primary Key
	Slide 18: Create Table: Specifying a Primary Key
	Slide 19: Create Table: Specifying a Primary Key
	Slide 20: How about a Primary Key here?
	Slide 21: Multiple Attributes as a Primary Key
	Slide 22: How to constraint an Attribute to be not Null
	Slide 23: Not Null Constraint on an Attribute
	Slide 24: Create Table: Specifying a Foreign Key
	Slide 25: Create Table: Specifying a Foreign Key
	Slide 26: Inserting and Deleting Rows
	Slide 27: Inserting and Deleting Rows
	Slide 28: SQL Querying: Reading data from Database
	Slide 29: SQL Querying: Reading data from Database
	Slide 30: SQL Querying: Reading data from Database
	Slide 31: SQL Querying: Reading data from Database
	Slide 32: What if I want some arithmetic on output?
	Slide 33: Select command + arithmetic operators
	Slide 34: Select with Condition
	Slide 35: Select with Condition (where clause)
	Slide 36: Select with Multiple Relations
	Slide 37: Select with Multiple Relations
	Slide 38: Select with Multiple Relations – Join Operation
	Slide 39: Select with Multiple Relations – Join Operation
	Slide 40: Select with Multiple Relations
	Slide 41: Select with Multiple Relations
	Slide 42: Natural Join
	Slide 43: Natural Join
	Slide 44: Are these queries same or different?
	Slide 45: Are these queries same or different?
	Slide 46: Natural Join with Three Relations
	Slide 47: Natural Join with Three Relations
	Slide 48: Missing from Join
	Slide 49: Outer Join
	Slide 50: Natural Right Outer Join
	Slide 51: Attribute Name Change?
	Slide 52: As Clause – Renaming
	Slide 53: Any other benefits of As Clause?
	Slide 54: As Clause – Renaming
	Slide 55: As Clause – Renaming
	Slide 56: String matching
	Slide 57: String matching (%)
	Slide 58: String matching (_)
	Slide 59: String matching (%)
	Slide 60: String matching (\)
	Slide 61: How to print all the columns?
	Slide 62: Select *
	Slide 63: Filtering for Null Values
	Slide 64: Null Values
	Slide 65: Aggregate Functions
	Slide 66: Average Function
	Slide 67: Average – Group By Clause
	Slide 68: Average – Group By, Having
	Slide 69: Sum Function
	Slide 70: Nested Subqueries
	Slide 71: Nested Subqueries
	Slide 72: Nested Subqueries
	Slide 73: Functions and Procedures
	Slide 74: Self-Reading Task

