Database Processing

Lecture 3:
Storage

CS 451 /551

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 1

* Assignment 1 will be released today on course webpage:
* https://gupta-suyash.github.io/cs451-fall25.html

* Deadline: October 28, 2025 at 11:59pm.

* Start planning, talk to your group members.
* If you don’t have a group yet, today is your last day to form/join a group.
* We will no longer create groups for you.

* We will discuss Assignment 1 in the next class.

* Feel free to read Lstore paper > We will discuss in the class.

https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html
https://gupta-suyash.github.io/cs451-fall25.html

Last Class

* SQL Querying

Physical View

* Until now we studied the logical or a user’s view of the data.

* Next, we look at the physical view of the data?

Physical View

* Until now we studied the logical or a user’s view of the data.

* Next, we look at the physical view of the data.
* How is data stored?
* What are the physical media to store data?
* What data structures help in faster access?

Storage Hierarchy

<
<
oo

Magnetic Tapes

Primary Storage

Decreasing ycreasing Size

Secondary Storage

Tertiary Storage

Storage Hierarchy

Main Memory

Flash Memory

Magnetic Disk
Optical Disk

Magnetic Tapes

Always inside your computer.

Too small to store the full
database.

Data loss when power turns off.

Still valuable as the CPU aims to
frequently loads them up with
recent data to avoid data misses.

A good application or system
design targets cache hits.

Often, there are several levels of
main memory: L1, L2, and L3.

Storage Hierarchy

Magnetic Tapes

USB stick or external memory.

No data loss on turning off power.

Storage Hierarchy

Cache

Flash Memory

Useful for long-term storage of

Magnetic Disk the database.
At the time of processing, CPU
Optical Disk moves data from magnetic disk to
the main memory.
Magnetic Tapes

Storage Hierarchy

Cache

Flash Memory

Magnetic Disk

Optical Disk
Magnetic Tapes

Older storage media; not common
everywhere.

10

Magnetic Disks

» Magnetic disks are where large databases reside; databases can span multiple disks.

* Components of Magnetic Disks?

11

Magnetic Disks

» Magnetic disks are where large databases reside; databases can span multiple disks.

* Components of Magnetic Disks?

Read/Write head

Spindle Read/Write Arm

12

Magnetic Disks

» Magnetic disks are where large databases reside; databases can span multiple disks.

* How is data stored in Magnetic Disks?

Read/Write head

Spindle Read/Write Arm

13

Magnetic Disks

* Magnetic disks are where large databases reside; databases can span multiple disks.

» Each disk is divided into platters = each platter has multiple tracks = each track
has multiple sectors.

* Platters sit on a spindle, which rotates at some speed (say 1500 rpm).

e Sector is the smallest unit of information that can be read or written.
* About 512 Bytes.

Platters

Read/Write head

Spindle Read/Write Arm

14

Magnetic Disks — Read-write Head?

Magnetic Disks — Read-write Head?

* Read-write head stores the information on a sector magnetically as reversals of the
direction of magnetization.

* Read-write head does not touch the disk, but is kept as close as possible to increase
writing density.

Magnetic Disks — Disk Controller?

 Disk controller is a software (stored on disk case) that interfaces between actual disk
h/w and the computer system.

* It accepts high-level commands to read/write to a sector.
* Attaches a checksum to each sector when the data is written.

* On reading a sector, computes its checksum, and matches against stored
checksum.

* If checksums don’t match - Data corruption!

Disk Performance Metrics?

Disk Performance Metrics

* Access Time — Time difference between when a read/write request is issued to when
data transfer begins.

* Seek Time + Rotational Latency
* Seek Time = Time to position the read-write arm to correct track.
* Rotational latency = Time to reach the correct sector under the read-write head.

Disk Performance Metrics

* Access Time — Time difference between when a read/write request is issued to when
data transfer begins.

* Seek Time + Rotational Latency
* Seek Time = Time to position the read-write arm to correct track.
* Rotational latency = Time to reach the correct sector under the read-write head.

 Data Transfer rate 2 The rate at which data can be retrieved from a disk.
» Measured after the first sector is accessed.

Disk Performance Metrics

* Access Time — Time difference between when a read/write request is issued to when
data transfer begins.

* Seek Time + Rotational Latency
* Seek Time = Time to position the read-write arm to correct track.
* Rotational latency = Time to reach the correct sector under the read-write head.

 Data Transfer rate 2 The rate at which data can be retrieved from a disk.
» Measured after the first sector is accessed.

* Mean Time To Failure (MTTF) - The average amount of time a device runs
continuously without any failure.

RAID

RAID

e Disks are slow to read/write the data!
* How can we speed up?

* Redundant Arrays of Independent Disks (RAID)
* Multiple disks instead of one.

* Can read or write to the disks in parallel.

* Can improve reliability by duplicating same data to multiple disks
- Also known as replication
- Guards against failures!
- Increases Mean Time to Failure

How do Modern Databases Look Like?

How do Modern Databases Look Like?

* There are databases which are quite small 2 up to 50 GB!
* Some of these you can even store in main-memory!
* For example: 2009 English Wikipedia was just 20GB!

 Then there are other databases which can be stored in Flash drives (SSDs).
* Slower than main-memory but faster than HDDs (magnetic disks)

* But, several other databases require petabytes of space.
* Facebook image database!
* You would need multiple disks!

Disk vs. OS Terminology

 From disk perspective, we store data on platters = tracks = sectors.
* From OS perspective, we store data in blocks or pages.

* One block can span multiple sectors!
* In this class, we will assume each block has same size as a sector.

* Blocks and pages are synonyms!

* More technically = Blocks is used as the terminology for data on disk and page
is used when data is in main memory (RAM).

What is meant by next block?

What is meant by next block?

* You want to read some blocks from disk. How should you proceed?

What is meant by next block?

* You want to read some blocks from disk. How should you proceed?
* Find the first block address you are interested.
* Move the read/write arm to specific platter and then to correct track.
* Then move the read/write head to correct sector.

* Now, where do you read the next block? Which sector?
* You want to read or write fast! Not increase seek time + rotational latency!

What is meant by next block?

* Lets define next block to read
* Read sectors on same track.
* Then same track number on next platter (same cylinder, a logical concept)
* Then next track on adjacent cylinder.

< Track 0, Sector 0
Track 1, Sector 0
) Track 0, Sector 1

A

v

Platter 1

A

Track 0, Sector 0
Platter 2 s Track 1, Sector 0
) Track 0, Sector 1

v

What is meant by next block?

 This is how we even store database files on disk!

* Files are stored sequentially on disk.
 Allows us to fetch using the notion of next block.

* Any other benefits of sequential storage?

What is meant by next block?

 This is how we even store database files on disk!

* Files are stored sequentially on disk.
 Allows us to fetch using the notion of next block.

* Any other benefits of sequential storage?

* Sequential scan also allows pre-fetching!
* Read a large amount of data ahead of time even if we need only one block.
* Hope that future reads will be cheap = data available in memory.

Disk and System Communication

SQL Client

A

v

Database Stored
on Disk

Disk and System Communication

SQL Client

!

File System Manager

!

Database Stored
on Disk

Disk and System Communication

* File system manager, a component of OS
manages interaction with disk.

* Keeps track which page is where on disk.
* Read a page from the disk.

* Write a page to the disk. SQL Client

!

* Higher levels basically send requests to the file

File System Manager

system manager.

* They ask filesystem to allocate or }
deallocate logical pages.
* Read or write data to pages. Database Stored
on Disk

* Remember higher levels do not know
anything about how pages are managed or
how the database is stored!

Disk and System Communication

Thus, File system manager needs to provide
access to pages as fast as possible!

It needs to ensure that pages are stored

sequentially on this disk. SQL Client

!

It should be able to pre-fetch pages to fulfill
requirements fast!

File System Manager

!

Any pre-fetched pages are pushed to the
memory so that future reads can be served Database Stored
from the memory itself. atavase S ore

on Disk

Mapping Tables to Disk

File 1

Database spans
multiple files.

A 4

File 2

File 3

2% >

File 1

Page 11 Page 31

Page 21 Page 4%,

Each file consists of
multiple pages.

Each page is physically
stored on a disk sector.

Y R

7

Mapping Tables to Disk

name age | title
Voldemort |70 Assoc Prof
Anakin 20 Assoc Prof
Kang 20 Prof

Gru 45 Asst Prof
Thanos 100 Prof

cs-employees

Each table consists of
several records/rows.

— || Voldemort |70 Assoc Prof

Each record is stored in a
page. We are assuming
one page per record.

Mapping Records to File

* So how do we place records on a file?

Mapping Records to File

* So how do we place records on a file?
* We need to determine the size of the record to know how many blocks it needs.
* Not every record is exactly one block size!

* Records can be divided into two groups:
* Fixed-length records
* Record Size can be determined from the schema.

* Variable-length records
* Size of some attributes can only be determined at runtime.

Fixed-Length Records

create table cs_employees

har(23 record 0 | Voldemort | 70 400

(ndme ¢ ar()’ record 1 | Anakin 20 200

age int, record 2 | Kang 20 500

Salary numeriC(SIZ) record 3 | Gru 45 100

) record 4 | Thanos 100 400
J

cs-employees

* Say, the following is the schema of our table.
* Total size of a record = 23 Bytes + 4 Bytes + 8 Bytes = 35 Bytes.

* How do we store in the memory?
* Reserve first 35 Bytes for Record 1, next 35 Bytes for Record 2, and so on.

Problems with Fixed-Length Records

* Unless block size is a multiple of 35 Bytes, some records will need to be
stored in another block.

* So two blocks need to be fetched for accessing each record.

Problems with Fixed-Length Records

* Deleting a record creates a problem of space management!

Problems with Fixed-Length Records

* Deleting a record creates a problem of space management!

* Way 1:
* On deleting the record, move all the succeeding records up.
* Shift one space in the memory.
* Simple solution!

* Bad performance.
record 0 | Voldemort | 70 400

* Large number of records moved. record 1 | Anakin 20 | 200

record 3 | Gru 45 100
record 4 | Thanos 100 400

cs-employees

On deleting record 2 and moving 3 and 4 up.

Possible Solution for Fixed-Length Records

* Way 2: Insert a new record in the space of deleted record.
* Hard to track, which all spaces are available.

record 0 | Voldemort | 70 400
record 1 | Anakin 20 200
record 5 | Joker 66 700
record 3 | Gru 45 100
record 4 | Thanos 100 400

cs-employees

New record 5, inserted in space of record 2.

Free List for Fixed-Length Records

Free List for Fixed-Length Records

 Make use of file header.

* File header stores all the meta (important) information about the file.

« We can maintain a free-list: store here information about first deleted record.
 Then this record points to next deleted record.

record 0 | Voldemort |70 400
record 1 | Anakin 20 200

S~

record 3 | Gru 45 100 >

cs-employees

Free-list, tracked through header.

Variable-Length Records

create table cs_employees
record 0 | Voldemort | 70 400

(name varchar(100), rocord 1 | Anakin 20 200

age int, record 2 | Kang 20 500

salary numeric(8,2) record 3 | Gru 45 100

record 4 | Thanos 100 400

cs-employees

* Say, the following is the schema of our table.
* The maximum size for varchar is 100 Bytes, but a name could be smaller.
* We can say that each record has size (100 Bytes + 4 Bytes + 8 Bytes) = 112 Bytes.

* But record 0 has size only 18 Bytes? Why waste so much space?

Representing Variable-Length Records

Representing Variable-Length Records

* For each variable-length record, store an (offset, length) pair.

 Offset - The position in the representation.
* Length = The size of variable-length field.

Representing a Record

create table cs_employees Voldemort |70 | 400
Anakin 20 200
(name varchar(100), Kang o T200
age int, Gru 45 100
salary numeric(8,2) Thanos 100 | 400
);
Position Length Null Bitmap stored in 1 Byte
|
m 70 | 400 Voldemort
Bytes 0 4 8 16 17 26

Mapping Records to Disk Blocks

* We assumed that one record per disk block.
* Often, multiple records per block.
* How to store or find a record in a block?

* Each block has a header that tracks number of records and free space.

Size
Location

Block Header

Records

#Entries

N

~
—~—eem = ™

Mapping Records to File

* So we have mapped records to a block/page.
* But we still have not mapped them to files.

* Different ways of organizing records to a file?

Mapping Records to File

* So we have mapped records to a block/page.
* But we still have not mapped them to files.

* Different ways of organizing records to a file:
* Heap File organization
* Sequential File organization
* Hashing File organization

Heap File Organization

* Any record can be placed anywhere in the file.
* No ordering of records.

* One file per relation.

Sequential File Organization

Sequential File Organization

* Allowing quickly searching records.

* Records are stored in sorted order based on some search key.
 Search key does not need to be a primary key.

* Records are linked via pointers for access and stored physically in search-key order.

_‘ Voldemort |70 | 400 ">

Search Key 4— 7 Anakin 20 | 200 ‘>
112 ¢ | Kang 20 | 500 .

1131 [Gru 5 100 |2

120f | Thanos 100 [400 |

Sequential File Organization

* Sorted Order creates challenges?

Sequential File Organization

* Sorted Order creates challenges.

* Deleting a record leaves a space and pointer needs to be remapped.

* Say we want to delete record 7.

Voldemort |70 |400
Anakin 20 | 200
12 Kang 20 | 500
13 Gru 45 | 100
20 Thanos 100 | 400

VAVAVAV

5 Voldemort 70 400
12 Kang 20 | 500
13 Gru 45 100
20 Thanos 100 {400

I~

Sequential File Organization

* How about insertion?
* Say we want to insert a record 6.

* This case is easy as we have an open gap in the file.

5 Voldemort |70 |400) 5 Voldemort |70 |400

> Joker 60 | 300
12 Kang 20 | 500 i 12 Kang 20 | 500
13 Gru 45 | 100 ~> 13 Gru 45 | 100
20 Thanos 100 | 400 > 20 Thanos 100 | 400

\AVAVAV/

Sequential File Organization

* How about inserting a record when there is no open gap?
* Say we want to insert a record 14.

* We need to insert the new record in an overflow block and re-map pointers.

Voldemort |70 |400 "> Voldemort |70 |400)
Joker 60 | 300 "> Joker 60 | 300)
12 Kang 20 | 500 . 12 Kang 20 | 500 .
13 Gru 45 100 ~> 13 Gru 45 | 100
20 Thanos 100 | 400 > 20 Thanos 100 | 400

v\/ AV

14 Sauron 900 | 800

Sequential File Organization

* If the overtlow block ends up having too many records = File Reorganization

* Too expensive to reorganize complete file.

Database Buffers

Database Buffers

* DBMS aims to minimize the access between disk and memory.

* If your database is larger than your main memory (generally the case), it needs to
be stored on disk.

* Disks are slow = Main memory is fast!

* So we have a buffer manager, which manages what blocks should be present in a
part of memory termed as buffer.

* Buffer manager is like virtual memory manager in OS.

* Tries to pre-fetch blocks = predicts what blocks will be needed in future to save
access time.

Database Buffers - Working

Database Buffers - Working

* When database asks for a block from buffer manager:
* If block already present in the buffer = It forwards the pointer to the block.
* If block is not present in the buffer
* It discards some existing block to make space.
* Fetches the required block from disk.
* Forwards the pointer to the block.

« How to discard a block.

* If the block in the buffer has been updated, that is, the version on disk is stale,
then replace the version on disk with the updated version.

* If the block in the buffer has no new updates, then simply discard.

Database Buffers

* Which block to discard = Buffer Replacement Policies
* Least Recently Used (LRU)
* Same as the OS LRU policy.

* The block least recently accessed is discarded first.

* Toss Immediate Policy
* If you can determine a block will not be used again, discard it.

select * from cs_employees natural join department;

Here, once a tuple of cs_employees is accessed, it can be discarded

69

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 1
	Slide 3: Last Class
	Slide 4: Physical View
	Slide 5: Physical View
	Slide 6: Storage Hierarchy
	Slide 7: Storage Hierarchy
	Slide 8: Storage Hierarchy
	Slide 9: Storage Hierarchy
	Slide 10: Storage Hierarchy
	Slide 11: Magnetic Disks
	Slide 12: Magnetic Disks
	Slide 13: Magnetic Disks
	Slide 14: Magnetic Disks
	Slide 15: Magnetic Disks – Read-write Head?
	Slide 16: Magnetic Disks – Read-write Head?
	Slide 17: Magnetic Disks – Disk Controller?
	Slide 18: Disk Performance Metrics?
	Slide 19: Disk Performance Metrics
	Slide 20: Disk Performance Metrics
	Slide 21: Disk Performance Metrics
	Slide 22: RAID
	Slide 23: RAID
	Slide 24: How do Modern Databases Look Like?
	Slide 25: How do Modern Databases Look Like?
	Slide 26: Disk vs. OS Terminology
	Slide 27: What is meant by next block?
	Slide 28: What is meant by next block?
	Slide 29: What is meant by next block?
	Slide 30: What is meant by next block?
	Slide 31: What is meant by next block?
	Slide 32: What is meant by next block?
	Slide 33: Disk and System Communication
	Slide 34: Disk and System Communication
	Slide 35: Disk and System Communication
	Slide 36: Disk and System Communication
	Slide 37: Mapping Tables to Disk
	Slide 38: Mapping Tables to Disk
	Slide 39: Mapping Records to File
	Slide 40: Mapping Records to File
	Slide 41: Fixed-Length Records
	Slide 42: Problems with Fixed-Length Records
	Slide 43: Problems with Fixed-Length Records
	Slide 44: Problems with Fixed-Length Records
	Slide 45: Possible Solution for Fixed-Length Records
	Slide 46: Free List for Fixed-Length Records
	Slide 47: Free List for Fixed-Length Records
	Slide 48: Variable-Length Records
	Slide 49: Representing Variable-Length Records
	Slide 50: Representing Variable-Length Records
	Slide 51: Representing a Record
	Slide 52
	Slide 54: Mapping Records to File
	Slide 55: Mapping Records to File
	Slide 56: Heap File Organization
	Slide 57: Sequential File Organization
	Slide 58: Sequential File Organization
	Slide 59: Sequential File Organization
	Slide 60: Sequential File Organization
	Slide 61: Sequential File Organization
	Slide 62: Sequential File Organization
	Slide 63: Sequential File Organization
	Slide 64: Database Buffers
	Slide 65: Database Buffers
	Slide 66: Database Buffers - Working
	Slide 67: Database Buffers - Working
	Slide 68: Database Buffers
	Slide 69

