Introduction to Databases

CS 451 /551

Lecture 4:

Searching and Indexing: Part 1

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 1 1s Out!
Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

Quiz 1: Oct 16, 2025 (in class)

Given a pile of numbers, how can we search
or access any number or a range of numbers.

Say following is a set of numbers

23 1 76 45

08
34 8 19

67 78

83

23

34

How will you find 76?

19 76 45

98

67 78

19

83

How will you check that 44 does not exist?

23 1 76 45

08
34 8 19

67 78

83

Lets assume these numbers are in a list

23 34 12 67 8 6 76 98 /8 45 83 19

Can we impose an order?

How about we sort all the numbers?

8 12 19 23 34 45 67 76 78 83 98

Sorting allow easy linear scan

We have a very simple algorithm, linear scan:

 Start from the first number and check each number.
* Once you reach a number greater than the number you are
searching, stop the search.

98

Sorted Linear Scan

1219 23 34 45 67 76

What is the average time complexity?

O(n)

78

83

98

Can we do better than Linear Scan?

Binary Search

 Lets split the numbers in a manner that eases searching.

« Simply said, we are going to group numbers.

Less than or equal to 34 Greater than 34

12

Binary Search Split Further

Binary Search Split Further

34

/\
,/12\. /6\.

8 23 67 83

SN N N N

8 12 19 23 34 45 67 76 78 83 98

This structure is similar to Binary Tree

34
A/lz\A A/76\A
8 23 67 83

SN N N N

6 8 12 19 23 34 45 67 76 78 83 98

Challenges for Binary Tree?

34
A/lz\A A/76\A
8 23 67 83

SN N N N

8 12 19 23 34 45 67 76 78 83 98

Binary Tree Challenges: Insertion and Deletion

34
A/lz\A A/76\A
8 23 67 83

SN N N N

6 8 12 19 23 34 45 67 76 78 83 98

* So, we have a binary tree.

* Inserting a new key or deleting an existing key is going to require
updating the tree structure.

Binary Tree Challenges: Concurrency

34
A/lz\A A/76\A
8 23 67 83

SN N N N

6 8 12 19 23 34 45 67 76 78 83 98

* Something that we will talk later is concurrency.

* Searching/Updating multiple numbers at the same time would be hard as
we need to lock a large part of the tree.

Binary Tree Challenges: Point or Range Query

34
A/lz\A A/76\A
8 23 67 83

SN N N N

6 g 12 19 23 34 45 67 76 78 83 98

To read 45, we need 4 Disk read operations. Remember, all of these are
stored on disk!

But, say we want to read all numbers greater than 4?

Is sorted list better now? Supports sequential access.

Indexes

Indexes

* Databases can be large > Extremely large with thousands of records.

* How can you search a record quickly in such large databases?
* Remember, we saw that in a file, each record is identified through a search key.

* To search a record, File system manager needs to bring a record from the disk,
and then check its search key.

* Imagine a query that wants to access multiple such records!

* Can we do better? = Yes, with the help of Indexes!
* Like books have table of contents that tell about the chapters in the book.
* Indexes inform about records.

21

How to determine a Good Index?

A good index should help to search a record fast!

* Characteristics of a good index:

* Access Types: Supports accessing a particular record (point query) and/or
records within a specified range (range query).

* Access Time: Time to find a particular record.

* Insertion Time: Time to insert a new record in the index (includes time to find
the right place to insert).

* Deletion Time: Time to delete a new record in the index (includes time to find
the item to be deleted).

* Space Overhead: The space consumed by the index.

Types of Indexes

 Broadly, we can divide indexes into two groups:
* Ordered Indexes
* Hashed Indexes

Clustering Indexes

* Index built on some search key.
* Search key could be the primary key or any other field of the table.

 Index entries are stored in a sorted manner.
* Hence, also called as sequential indexes.

* Types: Dense and Spare Indexes.

Dense Indexes

* Dense index includes an entry for every search-key.

Voldemort |70 |400
Anakin 20 | 200
12 o 12 Kang 20 | 500
13 » 13 Gru 45 | 100
20 * 20 Thanos 100 | 400

VAVAVAV/

Dense index with search-key “ID”

Dense Indexes

* Any attribute can act as the Search-key.

20 " 7 Anakin 20 200
45 12 Kang 20 | 500
70 \\» 13 | Gru 45 100
100 ~\. 5 Voldemort |70 |400

T 20 | Thanos 100 | 400

VAVAVAV/

Dense index with search-key “Age”

Inserting a new key/record in Dense Indexes

* Say, [want to insert a record with age 30 (search-key is Age).

20 7 Anakin 20 | 200
45 12 Kang 20 | 500
70 T 13 | Gru 45 | 100
100 \. 5 Voldemort |70 |400

T 20 | Thanos 100 | 400
20 > 7 Anakin 20 200
30 12 Kang 20 | 500
45 5555555‘555‘* 6 Scarecrow 30 150
70 \ 13 | Gru 45 100
100 \ 5 Voldemort |70 |400

\» 20 | Thanos 100 | 400

VAVAVAVAVERRVIVAVAV/

Scarecrow

30

150

27

Deleting a key/record in Dense Indexes

* Say, I want to delete a record with name Anakin and age 20 (search-key is Age).

20 > 7 Anakin 20 200 ">
30 — 12 |Kang 20 | 500 >
45 6 Scarecrow 30 150 -
70 \\ 13 | Gru 45 | 100 >
100 15 [Voldemort |70 |00 D
T 20 | Thanos 100 | 400 >
20 -
30 \\ 12 |Kang 20 [500 @ -
45 \\‘ 6 Scarecrow |30 | 150 ~>
70 \\ 13 | Gru 45 | 100 >
100 \\ 5 Voldemort 70 400 >
\ 20 | Thanos 100 | 400

Sparse Indexes

* Sparse index includes an entry for only some search-keys.
* Records are divided in groups and only one representative key per group.

5 " 5 Voldemort |70 |400 '>

12 \\ 7 Anakin 20 | 200 ‘>
12 Kang 20 | 500 -
13 Gru 45 | 100 >
20 Thanos 100 | 400 >

* To find an entry in a sparse index.

Sparse Indexes

* Start at the largest value smaller than the required entry.
* Then follow the pointers.

12

Voldemort |70 |400

7 Anakin 20 | 200

\ 12 |Kang 20 |500
13 Gru 45 | 100

20 Thanos 100 | 400

VAVAVAV/

Process to finding 20.

* To find an entry in an sparse index.

Sparse Indexes

* Start at the largest value smaller than the required entry.
* Then follow the pointers.

12

Voldemort |70 |400

7 Anakin 20 | 200

\ 12 |Kang 20 |500
13 Gru 45 | 100

20 Thanos 100 | 400

VAVAVAV/

Process to finding 20.

* To find an entry in an sparse index.

Sparse Indexes

* Start at the largest value smaller than the required entry.
* Then follow the pointers.

12

Voldemort |70 |400

7 Anakin 20 | 200

\ 12 |Kang 20 |500
13 Gru 45 | 100

20 Thanos 100 | 400

VAVAVAV/

Process to finding 20.

32

* To find an entry in an sparse index.

Sparse Indexes

* Start at the largest value smaller than the required entry.
* Then follow the pointers.

12

Voldemort |70 |400

7 Anakin 20 | 200

\ 12 |Kang 20 |500
13 Gru 45 | 100

20 Thanos 100 | 400

VAVAVAV/

Process to finding 20.

33

Inserting a new key/record in Sparse Indexes

* Say, [want to insert a record with age 30 (search-key is Age).

20 7 Anakin 20 | 200
70 N 12 Kang 20 | 500
\ 13 | Gru 45 100

5 Voldemort |70 |400

20 Thanos 100 | 400

20 > 7 Anakin 20 200
70 N 12 Kang 20 | 500
6 Scarecrow 30 150

13 Gru 45 100

5 Voldemort |70 |400

20 Thanos 100 | 400

VAVAVAVAVARRVAVAVIV/

Scarecrow

30

150

34

Inserting a new key/record in Sparse Indexes

* Say, [want to insert a record with age 18 (search-key is Age).

20 7 Anakin 20 | 200
70 N 12 Kang 20 | 500
\ 13 | Gru 45 100

5 Voldemort |70 |400

20 Thanos 100 | 400

18 3 Jotfrey 18 [600
70 N 7 Anakin 20 | 200
12 Kang 20 | 500

13 Gru 45 100

5 Voldemort |70 |400

20 Thanos 100 | 400

ViAVAV.VAVEERVAIVAVIV/

Jotfrey

18

600

35

Deleting a key/record in Sparse Indexes

* Say, [want to delete the record with name Kang and age 20 (search-key is Age).

20 7 Anakin 20 | 200 >

70 N 12 Kang 20 | 500 >
13 Gru 45 100 d

\ 5 Voldemort |70 | 400 >

20 Thanos 100 | 400 >

20 7 Anakin 20 | 200 >

70 \\ 13 Gru 45 1100 >
5 Voldemort |70 |400 d

20 Thanos 100 | 400 >

Deleting a key/record in Sparse Indexes

* Say, I want to delete the record Voldemort with age 70 (search-key is Age).

20 > 7 Anakin 20 | 200 >

70 N 12 Kang 20 | 500 >
13 Gru 45 100 d

\ 5 Voldemort |70 |400 >

20 Thanos 100 | 400 >

20 "7 Anakin 20 | 200 >

100 N 12 Kang 20 | 500 >
\ 13 | Gru 45 100

20 Thanos 100 | 400 >

Multi-Level Indexes

* Sparse index can still be large.

* In a database with 100 million entries a spare index of 100k entries will still span
multiple pages of the disk.

* How about we design multiple levels of indices? = an index for an index

Secondary Indexes

 Databases can have more than one index.

* Say in your database, you have an index on age of each employee, but soon you
observe that another set of frequent queries that you get is for employee salaries.

* Your current index is not effective in such a situation.
* You can design a “secondary index” on salary.

* However, secondary index must be dense! Should have an entry for each record.
* Why? Because your records are stored in the file according to the primary index.

Automatic Index Creation

* Modern databases automatically create an index on the primary key.

* Whenever a new tuple is inserted, they verify if the primary key property (unique
and not null) are not violated, and if not, the tuple is added to the database and an
entry is set in the index.

Automatic Index Creation

* Modern databases automatically create an index on the primary key.

* Whenever a new tuple is inserted, they verify if the primary key property (unique
and not null) are not violated, and if not, the tuple is added to the database and an
entry is set in the index.

	Slide 1: Introduction to Databases CS 451 / 551
	Slide 2: Assignment 1 is Out! Deadline: Oct 28, 2025 at 11:59pm Start collaborating with your groups! Quiz 1: Oct 16, 2025 (in class)
	Slide 3: Given a pile of numbers, how can we search or access any number or a range of numbers.
	Slide 4: Say following is a set of numbers
	Slide 5: How will you find 76?
	Slide 6: How will you check that 44 does not exist?
	Slide 7: Lets assume these numbers are in a list
	Slide 8: Can we impose an order?
	Slide 9: Sorting allow easy linear scan
	Slide 10: Sorted Linear Scan
	Slide 11: Can we do better than Linear Scan?
	Slide 12: Binary Search
	Slide 13: Binary Search Split Further
	Slide 14: Binary Search Split Further
	Slide 15: This structure is similar to Binary Tree
	Slide 16: Challenges for Binary Tree?
	Slide 17: Binary Tree Challenges: Insertion and Deletion
	Slide 18: Binary Tree Challenges: Concurrency
	Slide 19: Binary Tree Challenges: Point or Range Query
	Slide 20: Indexes
	Slide 21: Indexes
	Slide 22: How to determine a Good Index?
	Slide 23: Types of Indexes
	Slide 24: Clustering Indexes
	Slide 25: Dense Indexes
	Slide 26: Dense Indexes
	Slide 27: Inserting a new key/record in Dense Indexes
	Slide 28: Deleting a key/record in Dense Indexes
	Slide 29: Sparse Indexes
	Slide 30: Sparse Indexes
	Slide 31: Sparse Indexes
	Slide 32: Sparse Indexes
	Slide 33: Sparse Indexes
	Slide 34: Inserting a new key/record in Sparse Indexes
	Slide 35: Inserting a new key/record in Sparse Indexes
	Slide 36: Deleting a key/record in Sparse Indexes
	Slide 37: Deleting a key/record in Sparse Indexes
	Slide 38: Multi-Level Indexes
	Slide 39: Secondary Indexes
	Slide 40: Automatic Index Creation
	Slide 41: Automatic Index Creation

