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Searching and Indexing: Part 2



Assignment 1 is Out!
Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

Quiz 1: Oct 16, 2025 (in class)
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Last Class

• We discussed sequential indexes: sparse, dense, multi-level.

• What are the challenges with these indexes?
• A lot of file reorganization is needed when adding or deleting a record.

• Can we avoid the reorganization? Yes, but

• Then records are no longer mapped sequentially on the disk.

• Can we do better?
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How to determine a Good Index?

• A good index should help to search a record fast!

• Characteristics of a good index:

• Access Types: Supports accessing a particular record (point query) and/or 
records within a specified range (range query).

• Access Time: Time to find a particular record.

• Insertion Time: Time to insert a new record in the index (includes time to find 
the right place to insert).

• Deletion Time: Time to delete a new record in the index (includes time to find 
the item to be deleted).

• Space Overhead: The space consumed by the index.
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A More desirable Index Structure

• Should ensure minimal reorganization.

• Should support sequential data access from disk.

5



B+-Tree
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B+-Tree

• Another tree from the family of Balanced Trees.

• Three types of nodes: root, internal nodes, and leaf nodes.

• Every leaf node is at the same height.

• Give a value 𝒏, each internal node has:

• 𝒌 children

• 𝒌 − 𝟏 search keys

• where, 𝒌 is between 𝒏/𝟐  to 𝒏.

• Root can have less than 𝒏/𝟐  children but should have at least 2 children if there 
are more than one node in the tree. 7



B+-Tree Leaf Node Structure 
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5 Voldemort 70 400

7 Anakin 20 200

12 Kang 20 500

13 Gru 45 100

20 Thanos 100 400

7 13 Pointer to the next leaf

Internal nodes also have similar structure, except they point to other tree nodes



B+-Tree At a Glance

3 Joffrey 18 600

5 Voldemort 70 400

6 Scarecrow 30 150

8 Anakin 20 200

12 Kang 20 500

13 Gru 45 100

20 Thanos 100 400

25 Joker 66 200
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B+ Tree with ID used for indexing

13 20 25

6 8 25

8 1263 5

Root

Internal nodes

Leaf nodes

File



Searching data in B+-Tree

• Notice that the keys are stored in B+ tree in a sorted manner.

• We claim that the data is stored in B+ tree in sorted order because if you perform 
an in-order traversal, then you will get a sorted list.
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Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.
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Searching data in B+-Tree

• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.

• Stop traversing if one of the following three cases occur:

• Key is found!

• You encounter a Key greater than the search key.

• You have reached the last key or leaf node of the tree. 
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• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.
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• Key is found!
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Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the 
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key 
or a key greater than the range.
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Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the 
range, that is, first leaf node.
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Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the 
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key 
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Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the 
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key 
or a key greater than the range.
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Search Complexity of B+-Tree
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Search Complexity of B+-Tree

• If each node can have 𝑛 search keys (pointers), and total N records in the tree,

• 𝑶(𝒍𝒐𝒈 Τ𝒏
𝟐

 𝑵) is the length of the path.

• Ex: If 𝑛 = 100 and 𝑁 = 1,000,000, only 4 nodes need to be accessed.

• Only 4 blocks need to be read from disk.

• This is also an important distinction between B+-tree and Binary trees. 

• We can design B+-tree, where node size is large enough to be block size.

• So one block fetch gives access to one node of the B+-tree.

• Notice that root is most frequently accessed.

• Place it in your database buffer, which will save lookup cost.
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Insertions and Deletions in B+-Tree
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Insertions and Deletions in B+-Tree

• Insertions and Deletions are slightly more complex.

• You may need to split a node or merge two nodes.

• Split and merge operations can be avoided if there is a space, or you are not 
violating the B+-tree conditions.

• Remember; Give a value 𝒏, each internal node has:

• 𝒌 children

• 𝒌 − 𝟏 search keys

• where, 𝒌 is between 𝒏/𝟐  to 𝒏.

• Lets look at a live demonstration. 48



Insertions and Deletions in B+-Tree

30, 12, 56, 45, 18, 16, 10, 14, 8, 6, 90, 83, 67, 76, 49, 78, 

56, 49, 67, 83, 78, 90, 18, 30, 76,
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Insertions and Deletions Complexity

• If each node can have 𝑛 search keys (pointers), and total N records in the tree,

• 𝑶(𝒍𝒐𝒈 Τ𝒏
𝟐

 𝑵) is the number of I/O operations needed.

• Notice that insertion and deletion complexity is still same as search!

• This is the worst case complexity, on average fewer I/O operations are required.
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Can we use B+-tree for File organization?

• Till now, we used B+-tree for designing an index for our file.

• How about we use it to even organize our files.

• The leaf nodes of the B+-tree can store actual records.

• If each leaf has same size as the disk block, then one disk block I/O fetches 
necessary records.
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Self Reading Task

• Difference between B-tree and B+-tree.

• Disadvantages of B-tree when compared to B+-tree?
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Special Indices?

• Often, some attributes have only a small set of possible values.

• Course with grades Pass or Fail.

• Daily Attendance: Present or Absent

• For some attributes, we can create groups for their values.

• Faculty Title: Assistant Prof., Associate Prof., Professor

• Salary Payscale: L1 ( < 100); L2 ( 100 - 300); L3 (300 – 500); L4 ( > 500)
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Bitmap Indices

• Often, some attributes have only a small set of possible values.

• Course with grades Pass or Fail.

• Daily Attendance: Present or Absent

• For some attributes, we can create groups for their values.

• Faculty Title: Assistant Prof., Associate Prof., Professor

• Salary Payscale: L1 ( < 100); L2 ( 100 - 300); L3 (300 – 500); L4 ( > 500)

• Constructing Bitmap indices is useful for such attributes.

• Each value is represented with the help of a bitmap.

• Each record needs a sequential identifier.

• The size of the bitmap is equal to number of records.

• One bitmap for each value! 54



Bitmap Indices

• Assume that the following is our table:

•  We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

Bitmap for Grade

P

F

Bitmap for Payscale

L1

L2

L3

L4
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Bitmap Indices

• Assume that the following is our table:

•  We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0

0 0 1 1

Bitmap for Grade

P
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Bitmap Indices

• Assume that the following is our table:

•  We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0 1

0 0 1 1 0
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Bitmap Indices

• Assume that the following is our table:

•  We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0 1 0

0 0 1 1 0 1

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

L1

L2

L3

L4



Bitmap Indices

• Assume that the following is our table:

•  We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0 1 0 1

0 0 1 1 0 1 0

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1 0 0 0 1

0 1 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

L1

L2

L3

L4



When are Bitmap Indices useful?

• Say we have the following query: 

select * from cs_employees

where grade = ‘P’;

• Is Bitmap index useful for this query?

• Not much, 

• You will scan the bitmap index. 

• For every record where grade is equal to P, you will fetch it from the disk.

• So, you did not have to fetch every record. 

• However, records are stored sequentially in blocks on the disk, so you may 
end up fetching a lot of blocks with not required blocks!
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When are Bitmap Indices useful?

• Say we have another query: 

select * from cs_employees

where grade = ‘P’ and payscale = ‘L1’;

• Is Bitmap index useful for this query?

• Significantly more, 

• We have bitmap indices on both grade and pay attributes. 

• So first, we will take an intersection of these bitmaps and then fetch!

1 1 0 0 1 0 1

Bitmap for Grade

P

Bitmap for Payscale

1 0 1 0 0 0 1L1 1 0 0 0 0 0 1

Intersection Bitmap
So only two records 

are fetched!
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