Database Processing

CS 451 /551

Lecture 5:

Searching and Indexing: Part 2

O

UNIVERSITY OF

OREGON

Suyash Gupta
Assistant Professor
Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Assignment 1 1s Out!
Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

Quiz 1: Oct 16, 2025 (in class)

Last Class

* We discussed sequential indexes: sparse, dense, multi-level.

* What are the challenges with these indexes?
* Alot of file reorganization is needed when adding or deleting a record.
* Can we avoid the reorganization? Yes, but
 Then records are no longer mapped sequentially on the disk.

 Can we do better?

How to determine a Good Index?

A good index should help to search a record fast!

* Characteristics of a good index:

* Access Types: Supports accessing a particular record (point query) and/or
records within a specified range (range query).

* Access Time: Time to find a particular record.

* Insertion Time: Time to insert a new record in the index (includes time to find
the right place to insert).

* Deletion Time: Time to delete a new record in the index (includes time to find
the item to be deleted).

* Space Overhead: The space consumed by the index.

A More desirable Index Structure

 Should ensure minimal reorganization.

 Should support sequential data access from disk.

B*-Tree

B*-Tree

* Another tree from the family of Balanced Trees.
 Three types of nodes: root, internal nodes, and leaf nodes.
 Every leaf node is at the same height.

e Give a value n, each internal node has:
e k children
* k — 1 search keys
* where, k is between [n/2] to n.

« Root can have less than [n/2] children but should have at least 2 children if there
are more than one node in the tree.

B*-Tree Leaf Node Structure

7 13 » Pointer to the next leaf
Voldemort 70 | 400
> 7 Anakin 20 200
12 Kang 20 | 500
» 13 Gru 45 100
20 Thanos 100 | 400

Internal nodes also have similar structure, except they point to other tree nodes

B*-Tree At a Glance

h-

» Internal nodes

» Leaf nodes

B* Tree with ID used for indexing

> 3 Jotfrey 18 | 600
> 5 Voldemort 70 | 400
» 6 Scarecrow 30 | 150
> 8 Anakin 20 | 200
> 12 Kang 20 | 500
» 13 Gru 45 | 100
» 20 Thanos 100 | 400
» 25 Joker 66 | 200

File

Searching data in B*-Tree

* Notice that the keys are stored in B+ tree in a sorted manner.

* We claim that the data is stored in B+ tree in sorted order because if you perform
an in-order traversal, then you will get a sorted list.

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N[N

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N[N

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

25

N

12

13

20

— | 25

13

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

25

N

12

13

20

— | 25

14

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

25

N

12

13

20

— | 25

15

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

AN

25

N

12

13

20

— | 25

16

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

N

25

N

12

13

20

— | 25

17

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

N

25

N

12

13

20

— | 25

18

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

— [

N

25

N

12

13

20

— | 25

19

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

— [

25

N

12

13

20

— | 25

20

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | 4

N

— [

25

N

12

13

20

— | 25

21

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13 | +

N

— [

25

N

12

13

20

— | 25

22

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N

25

TN [\

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N

25

TN [\

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N

|25

N

13

20

25

25

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N

— [

|25

N

13

20

26

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

N

— [

|25

N

13

20

27

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

B \\K'

VBN

N

3 (5] " |6 —» |8 121 | — |1

Searching data in B*-Tree

* Let’s run an in-order traversal, where we will only output data in the leaf nodes.

B \\K'

VN

N

3 (5] " |6 —» |8 121 | — |1

29

Searching data in B*-Tree

* Now, lets try to search a key = Say we want to search key 12.
* We need to traverse the tree in the in-order fashion.

* Stop traversing if one of the following three cases occur:

* Key is found!

* You encounter a Key greater than the search key.
* You have reached the last key or leaf node of the tree.

13

“

25

3 /ﬁ

12

—t |25

N

Searching data in B*-Tree

* Now, lets try to search a key - Say we want to search key 12.
* We need to traverse the tree in the in-order fashion.

* Stop traversing if one of the following three cases occur:

* Key is found!

* You encounter a Key greater than the search key.
* You have reached the last key or leaf node of the tree.

13

—

25

12

—t |25

N

Searching data in B*-Tree

* Now, lets try to search a key = Say we want to search key 12.
* We need to traverse the tree in the in-order fashion.

* Stop traversing if one of the following three cases occur:

* Key is found!

* You encounter a Key greater than the search key.
* You have reached the last key or leaf node of the tree.

-~

13

12

N

/ 12<13

J

25

/

20

—t |25

N

Searching data in B*-Tree

* Now, lets try to search a key = Say we want to search key 12.
* We need to traverse the tree in the in-order fashion.

* Stop traversing if one of the following three cases occur:

* Key is found!

* You encounter a Key greater than the search key.
* You have reached the last key or leaf node of the tree.

13

e

12>8

—

25

»

12

—t |25

N

Searching data in B*-Tree

* Now, lets try to search a key = Say we want to search key 12.
* We need to traverse the tree in the in-order fashion.

* Stop traversing if one of the following three cases occur:

* Key is found!

* You encounter a Key greater than the search key.
* You have reached the last key or leaf node of the tree.

-~

13

-

Check all keys in /'

—

25

\ this leaf node.

q

8

12

—{ | 13 20

—t |25

N

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

/’ \K
315/—>6l —{ |8 12_>13/20_4\25A

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key

or a key greater than the range.
- = .\\
! / \
3 [|5 | |—{ |6 — |8 [12| | —{ |13] [20] | = |25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

= 13 .\\
/ 12<13

J N

315/-—>6 —{ 8 | |12] | = |13 |20] | =25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

= 13 .\\
, \12>8 / \
3 15/-» 6 —f (8 | {12) | = |13[|20] | =25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

= & .\\
. Check all keys in f ™
\ this leaf node. / \
5 —

6 —f {8 | 12| | —{ |13] [20] | = |25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

//13.\

J N

Jump to next leaf
\ A
5 —

6 —f {8 | 12| | —{ |13] [20] | = |25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

= 13 .\\
- J N
13 is in range [12,24]
\ 7l
3 5 —> | 6 - | 8

12| | —| |13] [20] | —t |25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key
or a key greater than the range.

= 13 .\\
- J N
20 is in range [12,24]
\ 7l
3 5 —> | 6 - | 8

12| | —| |13] [20] | —t |25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key

or a key greater than the range.
= .\\

25

J N

-~
- Jump to next leaf
N N
3 5 —> | 6 - | 8

12| | —| |13] [20] | —t |25

Searching data in B*-Tree

* What we just did was a Point Query, where I wanted to search a specific item.

 Say we want to search a range of keys (Range Query) = Keys from 12 to 24.

* We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

* Then, perform linearly scan = follow the leaf pointers till you hit the last key

or a key greater than the range.
= .\\

25 But 25 is out of range,

J N

-
) So terminate search
\ — m
3 5 —> | 6 - | 8

12| | —| |13] [20] | —t |25

Search Complexity of B*-Tree

Search Complexity of B*-Tree

* If each node can have n search keys (pointers), and total N records in the tree,
* O(log ., N) is the length of the path.

* Ex:If n =100 and N = 1,000,000, only 4 nodes need to be accessed.
* Only 4 blocks need to be read from disk.

* This is also an important distinction between B*-tree and Binary trees.
* We can design B*-tree, where node size is large enough to be block size.
* So one block fetch gives access to one node of the B*-tree.

* Notice that root is most frequently accessed.
* Place it in your database buffer, which will save lookup cost.

Insertions and Deletions in B*-Tree

Insertions and Deletions in B*-Tree

* Insertions and Deletions are slightly more complex.
* You may need to split a node or merge two nodes.

 Split and merge operations can be avoided if there is a space, or you are not
violating the B*-tree conditions.

« Remember; Give a value n, each internal node has:
e k children

* k — 1 search keys
* where, k is between [n/2] to n.

e Lets look at a live demonstration.

Insertions and Deletions in B*-Tree

30, 12, 56, 45, 18, 16, 10, 14, 8, 6, 90, 83, 67, 76, 49, 78,

56, 49, 67, 83, 78, 90, 18, 30, 76,

Insertions and Deletions Complexity

* If each node can have n search keys (pointers), and total N records in the tree,
* O(log .. / N) is the number of I/O operations needed.

* Notice that insertion and deletion complexity is still same as search!

* This is the worst case complexity, on average fewer I/O operations are required.

Can we use B*-tree for File organization?

* Till now, we used B+-tree for designing an index for our file.
* How about we use it to even organize our files.

 The leaf nodes of the B+-tree can store actual records.

e If each leaf has same size as the disk block, then one disk block I/O fetches
necessary records.

Self Reading Task

* Difference between B-tree and B*-tree.

* Disadvantages of B-tree when compared to B*-tree?

52

Special Indices?

* Often, some attributes have only a small set of possible values.
* Course with grades Pass or Fail.
* Daily Attendance: Present or Absent

 For some attributes, we can create groups for their values.
 Faculty Title: Assistant Prof., Associate Prof., Professor
* Salary Payscale: L1 (<100); L2 (100 - 300); L3 (300 — 500); L4 (> 500)

Bitmap Indices

* Often, some attributes have only a small set of possible values.
* Course with grades Pass or Fail.
* Daily Attendance: Present or Absent

 For some attributes, we can create groups for their values.
 Faculty Title: Assistant Prof., Associate Prof., Professor
* Salary Payscale: L1 (<100); L2 (100 - 300); L3 (300 — 500); L4 (> 500)

* Constructing Bitmap indices is useful for such attributes.

 Each value is represented with the help of a bitmap.
 Each record needs a sequential identifier.
* The size of the bitmap is equal to number of records.

* One bitmap for each value!

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort |P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort | P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort | P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeotfrey P L1

L1

L2

L3

L4

Bitmap for Payscale

Bitmap Indices

* Assume that the following is our table:

* We can construct bitmaps for Grade and Payscale.

Bitmap for Grade

ID Name Grade | Payscale
1 Voldemort P L1
2 Anakin P L2
3 Kang F L1
4 Gru F L2
5 Thanos P L4
6 Joker F L3
7 Jeoffrey P L1

L1

L2

L3

L4

Bitmap for Payscale

When are Bitmap Indices useful?

* Say we have the following query:

select * from cs_employees

,.

where grade =‘I”’;

* [s Bitmap index useful for this query?

 Not much,
* You will scan the bitmap index.
* For every record where grade is equal to P, you will fetch it from the disk.
* So, you did not have to fetch every record.

* However, records are stored sequentially in blocks on the disk, so you may
end up fetching a lot of blocks with not required blocks!

When are Bitmap Indices useful?

* Say we have another query:

select * from cs_employees
where grade = ‘P’ and payscale =‘L1’;

* [s Bitmap index useful for this query?

* Significantly more,

* We have bitmap indices on both grade and pay attributes.
* So first, we will take an intersection of these bitmaps and then fetch!

Bitmap for Grade

P|1

1

0

0

1

0

L1

Bitmap for Payscale

Intersection Bitmap

1

0

1

0

0

0

1

1

0

0

0

0

0

1

So only two records
are fetched!

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 1 is Out! Deadline: Oct 28, 2025 at 11:59pm Start collaborating with your groups! Quiz 1: Oct 16, 2025 (in class)
	Slide 3: Last Class
	Slide 4: How to determine a Good Index?
	Slide 5: A More desirable Index Structure
	Slide 6: B+-Tree
	Slide 7: B+-Tree
	Slide 8: B+-Tree Leaf Node Structure
	Slide 9: B+-Tree At a Glance
	Slide 10: Searching data in B+-Tree
	Slide 11: Searching data in B+-Tree
	Slide 12: Searching data in B+-Tree
	Slide 13: Searching data in B+-Tree
	Slide 14: Searching data in B+-Tree
	Slide 15: Searching data in B+-Tree
	Slide 16: Searching data in B+-Tree
	Slide 17: Searching data in B+-Tree
	Slide 18: Searching data in B+-Tree
	Slide 19: Searching data in B+-Tree
	Slide 20: Searching data in B+-Tree
	Slide 21: Searching data in B+-Tree
	Slide 22: Searching data in B+-Tree
	Slide 23: Searching data in B+-Tree
	Slide 24: Searching data in B+-Tree
	Slide 25: Searching data in B+-Tree
	Slide 26: Searching data in B+-Tree
	Slide 27: Searching data in B+-Tree
	Slide 28: Searching data in B+-Tree
	Slide 29: Searching data in B+-Tree
	Slide 30: Searching data in B+-Tree
	Slide 31: Searching data in B+-Tree
	Slide 32: Searching data in B+-Tree
	Slide 33: Searching data in B+-Tree
	Slide 34: Searching data in B+-Tree
	Slide 35: Searching data in B+-Tree
	Slide 36: Searching data in B+-Tree
	Slide 37: Searching data in B+-Tree
	Slide 38: Searching data in B+-Tree
	Slide 39: Searching data in B+-Tree
	Slide 40: Searching data in B+-Tree
	Slide 41: Searching data in B+-Tree
	Slide 42: Searching data in B+-Tree
	Slide 43: Searching data in B+-Tree
	Slide 44: Searching data in B+-Tree
	Slide 45: Search Complexity of B+-Tree
	Slide 46: Search Complexity of B+-Tree
	Slide 47: Insertions and Deletions in B+-Tree
	Slide 48: Insertions and Deletions in B+-Tree
	Slide 49: Insertions and Deletions in B+-Tree
	Slide 50: Insertions and Deletions Complexity
	Slide 51: Can we use B+-tree for File organization?
	Slide 52: Self Reading Task
	Slide 53: Special Indices?
	Slide 54: Bitmap Indices
	Slide 55: Bitmap Indices
	Slide 56: Bitmap Indices
	Slide 57: Bitmap Indices
	Slide 58: Bitmap Indices
	Slide 59: Bitmap Indices
	Slide 60: Bitmap Indices
	Slide 61: Bitmap Indices
	Slide 62: Bitmap Indices
	Slide 63: When are Bitmap Indices useful?
	Slide 64: When are Bitmap Indices useful?

