
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ORNG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 5:

Searching and Indexing: Part 2

Assignment 1 is Out!
Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

Quiz 1: Oct 16, 2025 (in class)

2

Last Class

• We discussed sequential indexes: sparse, dense, multi-level.

• What are the challenges with these indexes?
• A lot of file reorganization is needed when adding or deleting a record.

• Can we avoid the reorganization? Yes, but

• Then records are no longer mapped sequentially on the disk.

• Can we do better?

3

How to determine a Good Index?

• A good index should help to search a record fast!

• Characteristics of a good index:

• Access Types: Supports accessing a particular record (point query) and/or
records within a specified range (range query).

• Access Time: Time to find a particular record.

• Insertion Time: Time to insert a new record in the index (includes time to find
the right place to insert).

• Deletion Time: Time to delete a new record in the index (includes time to find
the item to be deleted).

• Space Overhead: The space consumed by the index.
4

A More desirable Index Structure

• Should ensure minimal reorganization.

• Should support sequential data access from disk.

5

B+-Tree

6

B+-Tree

• Another tree from the family of Balanced Trees.

• Three types of nodes: root, internal nodes, and leaf nodes.

• Every leaf node is at the same height.

• Give a value 𝒏, each internal node has:

• 𝒌 children

• 𝒌 − 𝟏 search keys

• where, 𝒌 is between 𝒏/𝟐 to 𝒏.

• Root can have less than 𝒏/𝟐 children but should have at least 2 children if there
are more than one node in the tree. 7

B+-Tree Leaf Node Structure

8

5 Voldemort 70 400

7 Anakin 20 200

12 Kang 20 500

13 Gru 45 100

20 Thanos 100 400

7 13 Pointer to the next leaf

Internal nodes also have similar structure, except they point to other tree nodes

B+-Tree At a Glance

3 Joffrey 18 600

5 Voldemort 70 400

6 Scarecrow 30 150

8 Anakin 20 200

12 Kang 20 500

13 Gru 45 100

20 Thanos 100 400

25 Joker 66 200

13

B+ Tree with ID used for indexing

13 20 25

6 8 25

8 1263 5

Root

Internal nodes

Leaf nodes

File

Searching data in B+-Tree

• Notice that the keys are stored in B+ tree in a sorted manner.

• We claim that the data is stored in B+ tree in sorted order because if you perform
an in-order traversal, then you will get a sorted list.

10

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

11

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

12

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

13

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

14

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

15

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

16

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

17

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

18

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

19

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

20

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

21

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

22

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

23

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

24

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

25

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

26

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

27

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

28

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Let’s run an in-order traversal, where we will only output data in the leaf nodes.

29

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.

• Stop traversing if one of the following three cases occur:

• Key is found!

• You encounter a Key greater than the search key.

• You have reached the last key or leaf node of the tree.

30

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.

• Stop traversing if one of the following three cases occur:

• Key is found!

• You encounter a Key greater than the search key.

• You have reached the last key or leaf node of the tree.

31

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.

• Stop traversing if one of the following three cases occur:

• Key is found!

• You encounter a Key greater than the search key.

• You have reached the last key or leaf node of the tree.

32

13

13 20 25

6 8 25

8 1263 5

12 < 13

Searching data in B+-Tree

• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.

• Stop traversing if one of the following three cases occur:

• Key is found!

• You encounter a Key greater than the search key.

• You have reached the last key or leaf node of the tree.

33

13

13 20 25

6 8 25

8 1263 5

12 > 8

Searching data in B+-Tree

• Now, lets try to search a key → Say we want to search key 12.

• We need to traverse the tree in the in-order fashion.

• Stop traversing if one of the following three cases occur:

• Key is found!

• You encounter a Key greater than the search key.

• You have reached the last key or leaf node of the tree.

34

13

13 20 25

6 8 25

8 1263 5

Check all keys in
this leaf node.

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

35

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

36

13

13 20 25

6 8 25

8 1263 5

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

37

13

13 20 25

6 8 25

8 1263 5

12 < 13

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

38

13

13 20 25

6 8 25

8 1263 5

12 > 8

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

39

13

13 20 25

6 8 25

8 1263 5

Check all keys in
this leaf node.

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

40

13

13 20 25

6 8 25

8 1263 5

Jump to next leaf

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

41

13

13 20 25

6 8 25

8 1263 5

13 is in range [12,24]

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

42

13

13 20 25

6 8 25

8 1263 5

20 is in range [12,24]

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

43

13

13 20 25

6 8 25

8 1263 5

Jump to next leaf

Searching data in B+-Tree

• What we just did was a Point Query, where I wanted to search a specific item.

• Say we want to search a range of keys (Range Query) → Keys from 12 to 24.

• We need to traverse the tree in the in-order fashion to reach the first key in the
range, that is, first leaf node.

• Then, perform linearly scan → follow the leaf pointers till you hit the last key
or a key greater than the range.

44

13

13 20 25

6 8 25

8 1263 5

But 25 is out of range,
So terminate search

Search Complexity of B+-Tree

45

Search Complexity of B+-Tree

• If each node can have 𝑛 search keys (pointers), and total N records in the tree,

• 𝑶(𝒍𝒐𝒈 Τ𝒏
𝟐

 𝑵) is the length of the path.

• Ex: If 𝑛 = 100 and 𝑁 = 1,000,000, only 4 nodes need to be accessed.

• Only 4 blocks need to be read from disk.

• This is also an important distinction between B+-tree and Binary trees.

• We can design B+-tree, where node size is large enough to be block size.

• So one block fetch gives access to one node of the B+-tree.

• Notice that root is most frequently accessed.

• Place it in your database buffer, which will save lookup cost.

46

Insertions and Deletions in B+-Tree

47

Insertions and Deletions in B+-Tree

• Insertions and Deletions are slightly more complex.

• You may need to split a node or merge two nodes.

• Split and merge operations can be avoided if there is a space, or you are not
violating the B+-tree conditions.

• Remember; Give a value 𝒏, each internal node has:

• 𝒌 children

• 𝒌 − 𝟏 search keys

• where, 𝒌 is between 𝒏/𝟐 to 𝒏.

• Lets look at a live demonstration. 48

Insertions and Deletions in B+-Tree

30, 12, 56, 45, 18, 16, 10, 14, 8, 6, 90, 83, 67, 76, 49, 78,

56, 49, 67, 83, 78, 90, 18, 30, 76,

49

Insertions and Deletions Complexity

• If each node can have 𝑛 search keys (pointers), and total N records in the tree,

• 𝑶(𝒍𝒐𝒈 Τ𝒏
𝟐

 𝑵) is the number of I/O operations needed.

• Notice that insertion and deletion complexity is still same as search!

• This is the worst case complexity, on average fewer I/O operations are required.

50

Can we use B+-tree for File organization?

• Till now, we used B+-tree for designing an index for our file.

• How about we use it to even organize our files.

• The leaf nodes of the B+-tree can store actual records.

• If each leaf has same size as the disk block, then one disk block I/O fetches
necessary records.

51

Self Reading Task

• Difference between B-tree and B+-tree.

• Disadvantages of B-tree when compared to B+-tree?

52

Special Indices?

• Often, some attributes have only a small set of possible values.

• Course with grades Pass or Fail.

• Daily Attendance: Present or Absent

• For some attributes, we can create groups for their values.

• Faculty Title: Assistant Prof., Associate Prof., Professor

• Salary Payscale: L1 (< 100); L2 (100 - 300); L3 (300 – 500); L4 (> 500)

53

Bitmap Indices

• Often, some attributes have only a small set of possible values.

• Course with grades Pass or Fail.

• Daily Attendance: Present or Absent

• For some attributes, we can create groups for their values.

• Faculty Title: Assistant Prof., Associate Prof., Professor

• Salary Payscale: L1 (< 100); L2 (100 - 300); L3 (300 – 500); L4 (> 500)

• Constructing Bitmap indices is useful for such attributes.

• Each value is represented with the help of a bitmap.

• Each record needs a sequential identifier.

• The size of the bitmap is equal to number of records.

• One bitmap for each value! 54

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

Bitmap for Grade

P

F

Bitmap for Payscale

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1

0

Bitmap for Grade

P

F

Bitmap for Payscale

1

0

0

0

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1

0 0

Bitmap for Grade

P

F

Bitmap for Payscale

1 0

0 1

0 0

0 0

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0

0 0 1

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1

0 1 0

0 0 0

0 0 0

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0

0 0 1 1

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0 1

0 0 1 1 0

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1 0 0

0 1 0 1 0

0 0 0 0 0

0 0 0 0 1

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0 1 0

0 0 1 1 0 1

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

L1

L2

L3

L4

Bitmap Indices

• Assume that the following is our table:

• We can construct bitmaps for Grade and Payscale.

ID Name Grade Payscale

1 Voldemort P L1

2 Anakin P L2

3 Kang F L1

4 Gru F L2

5 Thanos P L4

6 Joker F L3

7 Jeoffrey P L1

1 1 0 0 1 0 1

0 0 1 1 0 1 0

Bitmap for Grade

P

F

Bitmap for Payscale

1 0 1 0 0 0 1

0 1 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

L1

L2

L3

L4

When are Bitmap Indices useful?

• Say we have the following query:

select * from cs_employees

where grade = ‘P’;

• Is Bitmap index useful for this query?

• Not much,

• You will scan the bitmap index.

• For every record where grade is equal to P, you will fetch it from the disk.

• So, you did not have to fetch every record.

• However, records are stored sequentially in blocks on the disk, so you may
end up fetching a lot of blocks with not required blocks!

63

When are Bitmap Indices useful?

• Say we have another query:

select * from cs_employees

where grade = ‘P’ and payscale = ‘L1’;

• Is Bitmap index useful for this query?

• Significantly more,

• We have bitmap indices on both grade and pay attributes.

• So first, we will take an intersection of these bitmaps and then fetch!

1 1 0 0 1 0 1

Bitmap for Grade

P

Bitmap for Payscale

1 0 1 0 0 0 1L1 1 0 0 0 0 0 1

Intersection Bitmap
So only two records

are fetched!

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 1 is Out! Deadline: Oct 28, 2025 at 11:59pm Start collaborating with your groups! Quiz 1: Oct 16, 2025 (in class)
	Slide 3: Last Class
	Slide 4: How to determine a Good Index?
	Slide 5: A More desirable Index Structure
	Slide 6: B+-Tree
	Slide 7: B+-Tree
	Slide 8: B+-Tree Leaf Node Structure
	Slide 9: B+-Tree At a Glance
	Slide 10: Searching data in B+-Tree
	Slide 11: Searching data in B+-Tree
	Slide 12: Searching data in B+-Tree
	Slide 13: Searching data in B+-Tree
	Slide 14: Searching data in B+-Tree
	Slide 15: Searching data in B+-Tree
	Slide 16: Searching data in B+-Tree
	Slide 17: Searching data in B+-Tree
	Slide 18: Searching data in B+-Tree
	Slide 19: Searching data in B+-Tree
	Slide 20: Searching data in B+-Tree
	Slide 21: Searching data in B+-Tree
	Slide 22: Searching data in B+-Tree
	Slide 23: Searching data in B+-Tree
	Slide 24: Searching data in B+-Tree
	Slide 25: Searching data in B+-Tree
	Slide 26: Searching data in B+-Tree
	Slide 27: Searching data in B+-Tree
	Slide 28: Searching data in B+-Tree
	Slide 29: Searching data in B+-Tree
	Slide 30: Searching data in B+-Tree
	Slide 31: Searching data in B+-Tree
	Slide 32: Searching data in B+-Tree
	Slide 33: Searching data in B+-Tree
	Slide 34: Searching data in B+-Tree
	Slide 35: Searching data in B+-Tree
	Slide 36: Searching data in B+-Tree
	Slide 37: Searching data in B+-Tree
	Slide 38: Searching data in B+-Tree
	Slide 39: Searching data in B+-Tree
	Slide 40: Searching data in B+-Tree
	Slide 41: Searching data in B+-Tree
	Slide 42: Searching data in B+-Tree
	Slide 43: Searching data in B+-Tree
	Slide 44: Searching data in B+-Tree
	Slide 45: Search Complexity of B+-Tree
	Slide 46: Search Complexity of B+-Tree
	Slide 47: Insertions and Deletions in B+-Tree
	Slide 48: Insertions and Deletions in B+-Tree
	Slide 49: Insertions and Deletions in B+-Tree
	Slide 50: Insertions and Deletions Complexity
	Slide 51: Can we use B+-tree for File organization?
	Slide 52: Self Reading Task
	Slide 53: Special Indices?
	Slide 54: Bitmap Indices
	Slide 55: Bitmap Indices
	Slide 56: Bitmap Indices
	Slide 57: Bitmap Indices
	Slide 58: Bitmap Indices
	Slide 59: Bitmap Indices
	Slide 60: Bitmap Indices
	Slide 61: Bitmap Indices
	Slide 62: Bitmap Indices
	Slide 63: When are Bitmap Indices useful?
	Slide 64: When are Bitmap Indices useful?

