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Assignment 1 is Out!
Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!
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Term Paper for Graduate Students

• Select one area.

• Select one paper published in 2025 from the following 4 conferences:

• No two students can select the same paper.

• Your selected paper needs my approval.

• VLDB, SIGMOD, OSDI, SOSP.

• Describe the following in 4-page style ACM Sigmod double-column style.

• What is the paper’s goal?

• How is it meeting its goal?

• What are the disadvantages of the proposed design and advantages of the proposed design?

• Explain how can you improve the proposed design?

• What architectural changes you need to do?

• How to provide support for queries, say Natural Join?

• Topics:

• Federated Learning, Vector Databases, Graph Databases, Privacy-Preserving Databases



Unordered Indexing

• Until now, we studied ordered indexes, such as clustered indexes and trees.

• Next, we will look at unordered indexes → Hash indexes.
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Hashing
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Hashing

• Three key components of a hash index:

• A hash table, which stores all the keys.

• A function that helps to map the key to hash table.

• An hashing algorithm
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Types of Hashing
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Types of Hashing

• Two types of hashing schemes:

• Static Hashing → Size of hash map is fixed; cannot be increased.

• Dynamic Hashing → Size of hash map can increase as needed.
• Essentially as your databases increases over time, you can accommodate more data.
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Complexity of Hashing

• As hashed indexes are unordered, they do not force maintaining any specific order.

• The position of a key in the hash table is dictated by the hash function.

• Average case complexity for insertion, deletion, and search → 𝑶(𝟏)

• But, there are constants, which matter.

• Worst case complexity, given 𝒏 keys → 𝑶(𝒏)

• Hash tables support random access, unlike earlier indexes, which support 
sequential access.
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Static Hashing

• Say, we know that in our database there will be 5 records. 

• So, we select a hash function and create a hash table (array) of size 5.
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Static Hashing

• Say, we know in our database there will be 5 records. 

• So, we select a hash function and create a hash table (array) of size 5.
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Static Hashing

• Say, we know in our database there will be 5 records. 

• So, we select a hash function and create a hash table (array) of size 5.
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Challenges for Static Hashing
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Challenges for Static Hashing

• Fixed number of Keys

• Duplicate Keys

• Collisions

• Disk Access Cost
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Challenges for Static Hashing

• Fixed number of Keys → You should know the total size of the database in the 
future, and it cannot grow any further!

• For example, this hash table can only store 5 keys and if in the future your database 
gets a 6th record, you need to reorganize → change hash table → too expensive!
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Challenges for Static Hashing

• Unique Keys → How to store and search for duplicate keys?

• Hash function would map duplicate keys to the same location. 

• Overwrite pointer to existing record?

• How do you search for an existing record with duplicate keys?
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Challenges for Static Hashing

• No Collisions → Perfect hashing function that ensures there are no collisions.

• Hash function may end up assigning the same location to two or more records.
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Challenges for Static Hashing

• Disk Access Cost and Lack of opportunities for Pre-fetching.

• Fetching a single record (point query) is fast. But, say I want to fetch a range of 
records. These records could be spread across the disk → multiple blocks!

• No longer sequential access. Moreover, File Manager cannot even predict!
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Design Decisions for Static Hashing
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Design Decisions for Static Hashing

• Good Hash Function:

• Maps a large set of keys to a small array.

• Dilemma b/w using a fast hash function vs. a hash function with low collisions.

• Hashing Algorithm:

• How to handle key collisions when they occur?

• Dilemma b/w allocating a large table to prevent collisions vs. setting up rules 
that allow storing duplicate and colliding keys!
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Hash Functions

• Given an input key, it return an integer representation of that key.

• Essentially, you can use hash function to convert an arbitrary byte array into a 
fixed-length code. 

• We want a hash function that is both fast and has a low collision rate. 

• Notice that we are allowing collisions as we desire fast hashing!

• Alternatively, you can use a cryptographic hash function, like SHA256.

• No collisions! 

• Extremely secure → NIST recommended

• Extremely slow!
21



Hash Functions

• Fortunately, we don’t have to create a hash functions!

• CRC-64 (1975)

• Used in networks for error detection

• MurmurHash (2008) 

• Fast, general-purpose hash function.

• Google CityHash (2011)

• Fast for keys of short length.

• Facebook XXHash (2012)

• State-of-the-art

• Google FarmHash (2014)

• Better version of CityHash; reduced collisions 22
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Hash Schemes Performance 

If you want to test the performance of various hash functions, or play 
with different hash functions, check out SMHasher.
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Static Hashing Algorithms

• We will be looking at two common algorithms:

• Linear Probe Hashing

• Cuckoo Hashing

• These algorithms are also termed as open addressing:

• Essentially, the key may not be in the location where the hash function points.

• More advanced algorithms (not part of this course)

• Robinhood hashing

• Hopscotch hashing

• Swiss Tables

24



Linear Probe Hashing
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Linear Probe Hashing

• Simplest hashing algorithm → resolves collision by searching for next empty slot.

• Requires a fixed-size giant array (smaller the size, more collisions).

• Hash table’s load factor (like a threshold) determines when the table is too full.

• No new key should be added, otherwise collisions → allocate new table!

• Inserting a key:

• Use your hash function to find a slot (position). 

• If the location is empty, store the key in that slot.

• Otherwise, start sequential scanning from that location. 

• When you find an empty slot, insert your key in that slot.

• Deletion and Search:

• Same as insertion. 26



Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Linear Probe Hashing
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Searching in Linear Probe Hashing

• Follow the same algorithm as you are trying to insert.

• If the slot is empty, key not found.

• If the slot is full, then continue to next slot.

• Stop when you reach an empty slot or have covered all the slots.
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Deleting in Linear Probe Hashing

• How can we delete a record?

• Say, we want to delete the record 10, which maps to slot 3.
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Deleting in Linear Probe Hashing

• How can we delete a record?

• Say, we want to delete the record 10, which maps to slot 3.

• Can we set slot 3 to empty?
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Deleting in Linear Probe Hashing

• On deleting a record, setting a slot to empty is dangerous!

• Other keys could have also mapped to the same slot, but due to the slot being 
full, they were in subsequent locations.

• By emptying the slot, you are indicating that other keys also do not exist!

• Two possible solutions:

• Rearrangement

• Tombstones
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Deletions: Rearrangement

• Once a key is deleted, you can rehash all the keys again.

• Any key that was supposed to be mapped to the same slot can now take place.

• Too expensive! No database does this.
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Deletions: Tombstones

• Once a key is deleted, you place a tombstone for that key in that slot.

• Tombstone informs any future query that the specific key does not exist.

• However, other keys may still exist!
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Duplicate Keys in Linear Probe Hashing

• How do you handle duplicate (non-unique) keys?

• Two ways:

• Maintain a list of values

• Just simply allow adding redundant keys
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Duplicate Keys: List of Values
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Duplicate Keys: Allow Redundant Keys
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Cuckoo Hashing

• Why the name cuckoo?

• Like the bird cuckoo, if we do not find a free slot for a key, we may kick out an 
existing key!

• In cuckoo hashing, we use multiple hash functions to find free slots to store the key.

• Each hash function may give us a slot to place and if any of those slots is free, we 
store the key!

• If no slot is free, evict an existing key!
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Challenges with Cuckoo Hashing

• So what are the challenges with cuckoo hashing?

• Insertions are expensive → We need to do rehashing!

• We can get stuck into an infinite loop.

• To exit the infinite loop, add more hash functions, or increase size of table, or 
maintain some list.
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Dynamic Hashing

• The biggest challenge for static hashing remains to be fixed size of hash table.

• Alternatively, use dynamic hashing algorithms:

• Chained Hashing

• Extensible Hashing

• Linear Hashing
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Chained Hashing
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Chained Hashing

• For each slot in the hash table, there is a linked list of buckets.

• Essentially, collisions are resolved by placing all keys with the same slot into same 
linked list.

• Searching for a key requires scanning the linked list till you find the key or have 
reached end of the list.
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Chained Hashing
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Chained Hashing
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Chained Hashing
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Chained Hashing
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Chained Hashing
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Searching in Chained Hashing

• Use the hash function to reach the specific slot, and then scan the linked list till you 
find the key or have reached end of the list.

• For example, on searching 17, you would first reach slot 3, and then scan the list 
for slot 3 and find it is as the second entry in the linked list.
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Challenges with Chained Hashing

• What is the key challenge with chained hashing?

• If a lot of keys are hashed to the same slot, then 

• You have a massively large linked list, and 

• Searching a key comes expensive → same cost as linear scan.
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Extensible Hashing

• Solves the problem of massively large linked lists.

• Requires linked lists to be split, when size crosses a threshold.

• Requires observing each key in a bit format.

• When you hash a key, you get a numeric (base-10 or base-16) representation.

• You can convert that base-10 to binary format (base-2).

• For example: 4 can be represented as 100 in a 3-bit representation.
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Extensible Hashing
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Extensible Hashing
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Extensible Hashing
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Extensible Hashing
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Extensible Hashing
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Extensible Hashing
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Extensible Hashing
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Extensible Hashing
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Linear Hashing
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Linear Hashing

• Extensible hashing works well, but we perform the splitting lazily when the 
buckets for some bit(s) are full.

• What if we allow splitting to happen eagerly in the hope that in the future we 
would anyways need to split.

• Linear hashing performs eager and random splitting.

• We call the splitting random because you may end up splitting empty buckets.

• Note: there is no longer tracking of buckets via binary representation.

• What we need is a split pointer that tells where did the last split took place.

• Every n-th split introduces a new hash function. 83
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• Initially say our hash function is:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝒏 = 𝒌𝒆𝒚 % 𝟒
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• Say our buckets look like this:
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Pointers

Buckets

Linear Hashing

𝒉𝟏 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟒
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟕 = 𝟏𝟕 % 𝟒 = 1
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Pointer
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟕 = 𝟏𝟕 % 𝟒 = 1
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Split 
Pointer

The bucket is full, 
so we create a new 
bucket and link.
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟕 = 𝟏𝟕 % 𝟒 = 1
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11

Split 
Pointer

This situation has 
caused an overflow, 
so we need to split!
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟕 = 𝟏𝟕 % 𝟒 = 1
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7

11

Split 
Pointer

My split pointer 
is at 0, so I will 
split bucket 0.

17
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟕 = 𝟏𝟕 % 𝟒 = 1

6

7

11

Split 
Pointer

My split pointer is at 0, so 
I will split bucket 0, and 

add a new bucket pointer.
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟒 = 1

6

7

11

Split 
Pointer

Introduce a new hash 
function and Rehash the 
keys in original bucket 0.

8 % 8 = 0
20 % 8 = 4
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20

𝒉𝟐 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟖 = 1
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• Let’s insert a key = 17:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟒 = 1
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Split 
Pointer

Move the split pointer
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𝒉𝟐 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟖 = 1
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• Let’s insert a key = 16:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟔 = 𝟏𝟔 % 𝟒 = 0

6

7

11

Split 
Pointer

First try the hash 
function h1(key).
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𝒉𝟐 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟖 = 1
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• Let’s insert a key = 16:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟔 = 𝟏𝟔 % 𝟒 = 0

6

7

11

Split 
Pointer

As 0 is above the split 
pointer, so we need to run 

the next hash function.
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20

𝒉𝟐 𝟏𝟔 = 𝟏𝟔 % 𝟖 = 0
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• Let’s insert a key = 16:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟔 = 𝟏𝟔 % 𝟒 = 0

6

7

11

Split 
Pointer

As 0 is above the split 
pointer, so we need to run 

the next hash function.

17

20

𝒉𝟐 𝟏𝟔 = 𝟏𝟔 % 𝟖 = 0
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• Let’s insert a key = 12:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟐 = 𝟏𝟐 % 𝟒 = 0

6

7

11

Split 
Pointer

First try the hash 
function h1(key).
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𝒉𝟐 𝒌𝒆𝒚 = 𝒌𝒆𝒚 % 𝟖 = 1
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• Let’s insert a key = 12:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟐 = 𝟏𝟐 % 𝟒 = 0
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7
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Split 
Pointer

As 0 is above the split 
pointer, so we need to run 

the next hash function.

17

20

𝒉𝟐 𝟏𝟐 = 𝟏𝟐 % 𝟖 = 4
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• Let’s insert a key = 12:

Bucket 
Pointers

Buckets

Linear Hashing

𝒉𝟏 𝟏𝟐 = 𝟏𝟐 % 𝟒 = 0
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Split 
Pointer

As 0 is above the split 
pointer, so we need to run 

the next hash function.
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𝒉𝟐 𝟏𝟐 = 𝟏𝟐 % 𝟖 = 0
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