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Assignment 1 1s Out!
Deadline: Oct 28, 2025 at 11:59pm

Start collaborating with your groups!



Term Paper for Graduate Students

Select one area.

Select one paper published in 2025 from the following 4 conferences:
* No two students can select the same paper.
* Your selected paper needs my approval.

VLDB, SIGMOD, OSDI, SOSP.

Describe the following in 4-page style ACM Sigmod double-column style.
* What is the paper’s goal?
How is it meeting its goal?
What are the disadvantages of the proposed design and advantages of the proposed design?
Explain how can you improve the proposed design?
What architectural changes you need to do?
« How to provide support for queries, say Natural Join?

Topics:
* Federated Learning, Vector Databases, Graph Databases, Privacy-Preserving Databases



Unordered Indexing

e Until now, we studied ordered indexes, such as clustered indexes and trees.

 Next, we will look at unordered indexes 2 Hash indexes.



Hashing



Hashing

 Three key components of a hash index:
* A hash table, which stores all the keys.
* A function that helps to map the key to hash table.
* An hashing algorithm

X 5> hix) —
A key A function that
maps a key

Hash Table



Types of Hashing



Types of Hashing

* Two types of hashing schemes:

* Static Hashing = Size of hash map is fixed; cannot be increased.

* Dynamic Hashing - Size of hash map can increase as needed.
* Essentially as your databases increases over time, you can accommodate more data.



Complexity of Hashing

* As hashed indexes are unordered, they do not force maintaining any specific order.
 The position of a key in the hash table is dictated by the hash function.

» Average case complexity for insertion, deletion, and search = 0(1)
e But, there are constants, which matter.

* Worst case complexity, given n keys 2> 0(n)

* Hash tables support random access, unlike earlier indexes, which support
sequential access.



Static Hashing

* Say, we know that in our database there will be 5 records.

* So, we select a hash function and create a hash table (array) of size 5.

Hash Table File Storage
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Static Hashing

* Say, we know in our database there will be 5 records.

* So, we select a hash function and create a hash table (array) of size 5.

Hash Table File Storage
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Static Hashing

* Say, we know in our database there will be 5 records.

* So, we select a hash function and create a hash table (array) of size 5.

Hash Table File Storage
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Challenges for Static Hashing



Challenges for Static Hashing

* Fixed number of Keys
* Duplicate Keys

* Collisions

* Disk Access Cost



Challenges for Static Hashing

* Fixed number of Keys = You should know the total size of the database in the
future, and it cannot grow any further!

* For example, this hash table can only store 5 keys and if in the future your database
gets a 6 record, you need to reorganize = change hash table = too expensive!

Hash Table
0

= W N =

|
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Challenges for Static Hashing

* Unique Keys & How to store and search for duplicate keys?

* Hash function would map duplicate keys to the same location.
* Overwrite pointer to existing record?
* How do you search for an existing record with duplicate keys?

File Storage
20 Scarecrow 30 200 Oy ~ 13 Gru 45 100
/ 4 Voldemort 70 400
2 20 Thanos 100 | 400
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/
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Challenges for Static Hashing

* No Collisions = Perfect hashing function that ensures there are no collisions.

* Hash function may end up assigning the same location to two or more records.

File Storage

5 Jeotfrey 18 | 600 0lr ~ 13 Gru 45 | 100
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2 20 Thanos 100 | 400
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Challenges for Static Hashing

* Disk Access Cost and Lack of opportunities for Pre-fetching.

 Fetching a single record (point query) is fast. But, say I want to fetch a range of
records. These records could be spread across the disk = multiple blocks!

* No longer sequential access. Moreover, File Manager cannot even predict!



Design Decisions for Static Hashing



Design Decisions for Static Hashing

* Good Hash Function:
* Maps a large set of keys to a small array.
* Dilemma b/w using a fast hash function vs. a hash function with low collisions.

* Hashing Algorithm:
* How to handle key collisions when they occur?

* Dilemma b/w allocating a large table to prevent collisions vs. setting up rules
that allow storing duplicate and colliding keys!



Hash Functions

 Given an input key, it return an integer representation of that key.

* Essentially, you can use hash function to convert an arbitrary byte array into a
fixed-length code.

* We want a hash function that is both fast and has a low collision rate.
* Notice that we are allowing collisions as we desire fast hashing!

* Alternatively, you can use a cryptographic hash function, like SHA256.
* No collisions!
* Extremely secure = NIST recommended
* Extremely slow!



Hash Functions

 Fortunately, we don’t have to create a hash functions!

« CRC-64 (1975)
e Used in networks for error detection

* MurmurHash (2008)
* Fast, general-purpose hash function.

* Google CityHash (2011)
* Fast for keys of short length.

» Facebook XXHash (2012)
 State-of-the-art

* Google FarmHash (2014)
* Better version of CityHash; reduced collisions

22


https://create.stephan-brumme.com/crc32/
https://create.stephan-brumme.com/crc32/
https://create.stephan-brumme.com/crc32/
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/cityhash
https://github.com/google/cityhash
https://xxhash.com/
https://xxhash.com/
https://xxhash.com/
https://github.com/google/farmhash
https://github.com/google/farmhash
https://github.com/google/farmhash

Hash Schemes Performance

If you want to test the performance of various hash functions, or play
with different hash functions, check out SMHasher.



https://github.com/aappleby/smhasher

Static Hashing Algorithms

* We will be looking at two common algorithms:
 Linear Probe Hashing
* Cuckoo Hashing

* These algorithms are also termed as open addressing;:
* Essentially, the key may not be in the location where the hash function points.

* More advanced algorithms (not part of this course)
* Robinhood hashing
* Hopscotch hashing
* Swiss Tables



Linear Probe Hashing



Linear Probe Hashing

* Simplest hashing algorithm = resolves collision by searching for next empty slot.

* Requires a fixed-size giant array (smaller the size, more collisions).
« Hash table’s load factor (like a threshold) determines when the table is too full.
* No new key should be added, otherwise collisions = allocate new table!

* Inserting a key:
 Use your hash function to find a slot (position).
* If the location is empty, store the key in that slot.
* Otherwise, start sequential scanning from that location.
* When you find an empty slot, insert your key in that slot.

e Deletion and Search:
e Same as insertion.



Linear Probe Hashing

Hash Table File Storage
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Linear Probe Hashing

Hash Table

—

Gru

45

100

@

File Storage

10

Gru

45

100

(10)% 7

LW N = O

¥/

- 10

N Q1 W~




Linear Probe Hashing

Hash Table File Storage
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Linear Probe Hashing

Hash Table File Storage
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Linear Probe Hashing

File Storage
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Linear Probe Hashing

File Storage
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Linear Probe Hashing

Hash Table File Storage
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Linear Probe Hashing

File Storage
10 Gru 45 100
7 Voldemort |70 |400
17 Anakin 45 | 300

Hash Table
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Linear Probe Hashing

Hash Table File Storage
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Linear Probe Hashing

Hash Table
@) Joker 60 | 300 ol 7
1
(24)% 7 2
\/3 10
4 17 )
D
51 24
6

File Storage

10 Gru 45 100
7 Voldemort |70 |400
17 Anakin 45 300
24 Joker 60 | 300

36



Linear Probe Hashing

Hash Table File Storage
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Linear Probe Hashing

Hash Table File Storage
@) Thanos 100 | 500 ol 7 10 |Gru 45 | 100
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Linear Probe Hashing

Thanos

100

500

(5)% 7

Hash Table
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41 17
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File Storage
10 Gru 45 100
7 Voldemort |70 |400
17 Anakin 45 | 300
24 Joker 60 | 300
5 Thanos 100 | 500

39



Searching in Linear Probe Hashing

 Follow the same algorithm as you are trying to insert.
* If the slot is empty, key not found.
o [f the slot is full, then continue to next slot.
* Stop when you reach an empty slot or have covered all the slots.



Deleting in Linear Probe Hashing

* How can we delete a record?

* Say, we want to delete the record 10, which maps to slot 3.

Hash Table
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Deleting in Linear Probe Hashing

* How can we delete a record?
* Say, we want to delete the record 10, which maps to slot 3.
* Can we set slot 3 to empty?

Hash Table
0 7
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Deleting in Linear Probe Hashing

* On deleting a record, setting a slot to empty is dangerous!

* Other keys could have also mapped to the same slot, but due to the slot being
full, they were in subsequent locations.

* By emptying the slot, you are indicating that other keys also do not exist!

* Two possible solutions:
* Rearrangement
» Tombstones



Deletions: Rearrangement

* Once a key is deleted, you can rehash all the keys again.
* Any key that was supposed to be mapped to the same slot can now take place.

* Too expensive! No database does this.

Hash Table Hash Table
0 7 0 7

1 1

2 1 ___ o2

31 10 31 17

41 17 41 24
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Deletions: Tombstones

* Once a key is deleted, you place a tombstone for that key in that slot.

* Tombstone informs any future query that the specific key does not exist.

* However, other keys may still exist!

Hash Table
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For each tombstone, you
need to maintain the list of
keys that have been deleted!



Duplicate Keys in Linear Probe Hashing

* How do you handle duplicate (non-unique) keys?

* Two ways:
* Maintain a list of values
* Just simply allow adding redundant keys



Duplicate Keys: List of Values

Hash Table
0 7 Lists of Values
1
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Duplicate Keys: Allow Redundant Keys

Hash Table
0 7

1 5

2

31 10

4 5
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Cuckoo Hashing

* Why the name cuckoo?

* Like the bird cuckoo, if we do not find a free slot for a key, we may kick out an
existing key!

* In cuckoo hashing, we use multiple hash functions to find free slots to store the key.

 Each hash function may give us a slot to place and if any of those slots is free, we
store the key!

* If no slot is free, evict an existing key!



Cuckoo Hashing: Insertion

Hash Table
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion

Anakin 25 400
Hash Table
h1(10) 0
h2(10) 1
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Cuckoo Hashing: Insertion

Anakin
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400
Hash Table
h1(10) 0
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2
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As slot 3 is occupied, we select
slot 5 to store key 5.



Cuckoo Hashing: Insertion

Joker 66 | 300
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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So, we need to rehash key 5,
and only remaining slot is
the slot occupied by key 10



Cuckoo Hashing: Insertion
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Cuckoo Hashing: Insertion
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Challenges with Cuckoo Hashing

* So what are the challenges with cuckoo hashing?
* Insertions are expensive = We need to do rehashing!

* We can get stuck into an infinite loop.

* To exit the infinite loop, add more hash functions, or increase size of table, or
maintain some list.



Dynamic Hashing

* The biggest challenge for static hashing remains to be fixed size of hash table.

* Alternatively, use dynamic hashing algorithms:
* Chained Hashing
 Extensible Hashing
* Linear Hashing



Chained Hashing



Chained Hashing

* For each slot in the hash table, there is a linked list of buckets.

* Essentially, collisions are resolved by placing all keys with the same slot into same
linked list.

* Searching for a key requires scanning the linked list till you find the key or have
reached end of the list.



Chained Hashing
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Chained Hashing
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10

Gru

45

100

(10)% 7

@Qﬂb-lkwjl\.)b—\@

10




Chained Hashing
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Chained Hashing
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Chained Hashing
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Searching in Chained Hashing

* Use the hash function to reach the specific slot, and then scan the linked list till you
find the key or have reached end of the list.

* For example, on searching 17, you would first reach slot 3, and then scan the list
for slot 3 and find it is as the second entry in the linked list.



Challenges with Chained Hashing

* What is the key challenge with chained hashing?

* If a lot of keys are hashed to the same slot, then
* You have a massively large linked list, and
* Searching a key comes expensive = same cost as linear scan.



Extensible Hashing

* Solves the problem of massively large linked lists.
* Requires linked lists to be split, when size crosses a threshold.
* Requires observing each key in a bit format.

* When you hash a key, you get a numeric (base-10 or base-16) representation.
* You can convert that base-10 to binary format (base-2).

* For example: 4 can be represented as 100 in a 3-bit representation.



Extensible Hashing

* Initially, your hash map is 1-bit, and you have some fixed number of buckets for
each bit 2 Say 3 buckets.

Buckets

0 |
1 -

Hash Bits ﬁ
-\




Extensible Hashing

* Assume on passing the key 13 through a hash function, the binary representation
is 00011.

Buckets
00011

0 |
1 -

Hash Bits ﬁ
-\




Extensible Hashing

* Another key 7, after passing it through a hash function, let the binary
representation be 10011.

Buckets
00011

0 |
1 -

10011

Hash Bits ﬁ
-\




Extensible Hashing

* This way, all keys with binary representation starting from 0 go to buckets for bit 0,
and vice versa for buckets for bit 1.

Buckets
00011

0 |
1 -

10011

Hash Bits ﬁ
-\




Extensible Hashing

e Let's assume all the buckets for bit 1 are full.

Buckets
00011
. 7 01010
Hash Bits /
O _—
1 _
1 10011
11000

10110




Extensible Hashing

* So, now we need to split the buckets for bit 1. This will require expanding the bit
representation from 1-bit to 2-bits.

Buckets
00011
01010
>
Hash Bits
00 _ 10011
01 - /7 10110
10
11 #’X 11000




Extensible Hashing

* Notice that all the 2-bit representations starting with bit-0 continue pointing to the
old buckets.

Buckets
00011
01010
>
Hash Bits
00 _ 10011
01 - /7 10110
10
11 #’X 11000




Extensible Hashing

* Next, assume we received a key 18, and on passing it through the hash function,
the binary representation is 10010.

Buckets
00011
01010
>
Hash Bits
00 ] 10011

01 i /7 10110
10 10010
11 #’X 11000




Extensible Hashing

* Observe that all the buckets for bits 10 are full 2 Need to split again buckets for 10.
 Now, 3-bits.

Buckets

Hash Bits ﬁ 00011
000 ] ﬁ 01010

—>
001 -
010 - 10011 10110
011 -/ 10010
100 — //
101 T 11000_
110 =
111 N




Linear Hashing



Linear Hashing

* Extensible hashing works well, but we perform the splitting lazily when the
buckets for some bit(s) are full.

* What if we allow splitting to happen eagerly in the hope that in the future we
would anyways need to split.

 Linear hashing performs eager and random splitting.
* We call the splitting random because you may end up splitting empty buckets.

* Note: there is no longer tracking of buckets via binary representation.

* What we need is a split pointer that tells where did the last split took place.
* Every n-th split introduces a new hash function.



Linear Hashing

* Initially say our hash function is:
h,(key) = key % n = key % 4 Buckets

Split
Pointer

—

Bucket

Pointers
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| 4
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Linear Hashing

* Say our buckets look like this:

h,(key) = key % 4 Buckets
8
Split ! Bucket 20
: | :
Pointer Pointers

— : ol - 5
: 1 — 193
|
| 7 -
| 6
Y S
|
|
; 7
: 11
|
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Linear Hashing

* Let’s insert a key =17:

h,(17) =17%4=1 Buckets
8
Split ! Bucket 20
, | :
Pointer Pointers

— : ol - 5
: 1 — 193
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| o _
| 6
3 1.
|
|
: 7
: 11
|
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* Let’s insert a key =17:
hi(17) =17%4=1
Split
Pointer
—

The bucket is full,
SO we create a new
bucket and link.

Linear Hashing
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* Let’s insert a key =17:
hi(17) =17%4=1

Split
Pointer

—

This situation has
caused an overflow,
so we need to split!

Linear Hashing
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* Let’s insert a key =17:
hi(17) =17%4=1

My split pointer
is at 0, so I will
split bucket 0.

Split
Pointer

—

Linear Hashing

Bucket
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13
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3 1

11

89



Linear Hashing

* Let’s insert a key =17:

h,(17) =17%4=1 Buckets
8
Split Bucket 20
Pointer Pointers
— ol -

17

13

My split pointer is at 0, so

I will split bucket 0, and
add a new bucket pointer.

11

il

20

90



* Let’s insert a key =17:
h,(key) = key % 4 =1
h,(key) = key % 8=1

Split
Pointer

—

Introduce a new hash
function and Rehash the
keys in original bucket 0.

8%8=0
200/08=4

Linear Hashing

Buckets
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* Let’s insert a key =17:
h,(key) = key % 4 =1
h,(key) = key % 8=1

Split
Pointer

—)

Move the split pointer

Linear Hashing
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* Let’s insert a key = 16:
h,(16) =16 %4 =0
h,(key) = key % 8=1

Split
Pointer

—)

First try the hash
function h;(key).

Linear Hashing
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* Let’s insert a key = 16:
h,(16) =16%4=0
h,(16) =16 % 8=0

Split
Pointer

—)

As 0 is above the split
pointer, so we need to run
the next hash function.

Linear Hashing
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* Let’s insert a key = 16:
h,(16) =16%4=0
h,(16) =16 % 8=0

Split
Pointer

—)

As 0 is above the split
pointer, so we need to run
the next hash function.

Linear Hashing

Buckets

Bucket
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17

13

i

11
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* Let’s insert a key =12:
h,(12) =12 %4=0
h,(key) = key % 8=1

Split
Pointer

—)

First try the hash
function h;(key).

Linear Hashing
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* Let’s insert a key =12:
hi(12) =12%4=0
h,(12) =12% 8=4

Split
Pointer

—)

As 0 is above the split
pointer, so we need to run
the next hash function.

Linear Hashing

Buckets

Bucket

16
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17
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Linear Hashing

* Let’s insert a key =12:

h,(12) =12%4=0 Buckets
h,(12) =12%8=0 8
Split ! Bucket 16
Pointer Pointers
o - 5 7
N : ) i //_7/7 ’ —>
I
I \ 6
As 0 is above the split : 3 7
pointer, so we need to run | 4 |
the next hash function. :
; 7 20
' 11 12
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Linear Hashing

Buckets
B
Split ! Bucket 16
Pointer , Pointers I
L0 17
| N —
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