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Lecture 7: 

LSM Trees



Assignment 1 is Out!
Deadline: Today! Oct 28, 2025 at 11:59pm

Start collaborating with your groups!
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Some Lectures Ago…

• We learnt how data is stored in disks.

• We learnt how records are mapped across pages.
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• We saw the following structure for storing records in a page.

• Block header kept track of records and the free space.
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Mapping Records to Disk Blocks

#Entries Free
Space

Records

Size

Block Header

Location



• This layout scheme is also called as slotted pages.

• It is one of the most common record storage and tracking scheme.

• These pointer arrows are relative offsets to the specific location.
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Slotted Pages

#Entries 1 2 3 4 Free
Space

Records

Size

Slot Array

Location



• These pointer arrows are relative offsets to the specific location.

• Blue arrow represents the direction in which slot array and records can grow (use 
the free space)
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Slotted Pages

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location



• How to delete a record in this record layout scheme.

• Say, we want to delete record 3. What do you think will happen? 
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Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location



• Generally, following are the steps, which databases take:

• Delete the record and remove the pointer to the record from the slot array.

• Reorganize or garbage collect if necessary.

• “If necessary”? Depends on the database.
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Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location



• For example, in Postgres, how will record 3 get deleted?
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Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location



• Record 3 and the pointer to record 3 are removed.

• Then what?
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Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 2 1

Records

Size

Slot Array

Location



• Let’s try to add a new record 5. 

• Where do you think record 5 will get added?
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Slotted Pages: Record Deletion & Insertion

#Entries 1 2 3 4 4 2 1

Records

Size

Slot Array

Location



• In Postgres, record 5 gets added in the free space.

• Does not use the existing free locations.

• Then how can we reclaim this empty slot?
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Slotted Pages: Record Deletion & Insertion

#Entries 1 2 3 4 5 5 4 2 1

Records

Size

Slot Array

Location



• In Postgres, call the garbage collection operation.

• Post garbage collection, pointer reordering and record reorganization.
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Slotted Pages: Record Deletion & Insertion

#Entries 1 2 3 4 5 4 2 1

Records

Size

Slot Array

Location



• This notion of delayed compaction post deletion is pretty common.

• Databases like Postgres, Sqlite, and Oracle do not compact unless required or an 
explicit call to compaction.

• However, what do you think happens in other databases, for example: SQLServer?
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Slotted Pages: Delayed Compaction



• Lets try to delete Record 3 in SQLServer. 
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Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location



• Lets try to delete Record 3 in SQLServer.

• Post deletion, it actively performs compaction. 
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Slotted Pages: Record Deletion

#Entries 1 2 3 4 2 1

Records

Size

Slot Array

Location



• Slotted pages layout tells us how the records are stored in a page, but how do we 
insert or delete records in a page.

• In Lecture 3, we discussed sequential file organization, where we said that all the 
records are stored sequentially in a table.

• We discussed how records are inserted and deleted in this sequential file 
organization. 

• Lets go one step deeper!
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Record-Oriented Storage



• Steps to insert a new record in the page?
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Record-Oriented Storage



• Steps to insert a new record in the page?

• Search page directory to find a page with a free slot.

• If the page not in memory, fetch it from the disk. 

• Check slot array to find empty space in page that will fit.
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Record-Oriented Storage



• Steps to update an existing record using its record id?

• Search page directory to find the location of page (pointer to the page).

• If the page not in memory, fetch it from the disk. 

• Find offset to the record using slot array in the page.

• If new data fits, overwrite existing data. 

• Otherwise, mark existing tuple as deleted and insert new version in a different 

page.
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Record-Oriented Storage



• Fragmentation: 

• Not all pages are fully utilized → unusable space and empty slots. 

• Expensive Disk Fetching:

• To update one record, entire page needs to be fetched from the disk. 

• Random Disk Fetches: 

• Say you want to update multiple unrelated tuples. 

• You would end up fetching multiple pages from disk → Too expensive!

• How about no possibility of in-place updates?

• In-place updates essentially means that you can overwrite a record.

• But a lot of systems prohibit in-place updates, e.g. HDFS, Google Colossus.

• These systems support append-only → you can only insert a new copy of the 
record. 21

Challenges for Record-Oriented Storage

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
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Log-Structured Merge Trees



• Originally proposed as log-structure merge trees (LSM Trees) in 1996.

• Designed to support efficient write (update) operations.

• Essentially, records are stored in a log-style data structure.

• Each record is represented as a (key, value) pair.

• Key is the record ID.

• Value could be one single value, or a tuple corresponding to all the records.

• Unlike record-oriented architecture where we were updating in-place, we now 
append a new entry.

• In future, we will asynchronously merge values. 23

Log-Structured Storage

https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
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Log-Structured Storage

Memory Disk

• All operations start at memory: 
search, insert, update, delete.

• All operations occur in an-memory 
table → MemTable.

• When MemTable becomes full or you 
can’t find something in MemTable, 
then move to disk.

• When something not exists in 
memory, then move to disk.

• If memory is full, then create an on-
disk table → SSTable.

• Disk is divided into multiple levels → 
Hierarchical structure.

• When a level gets full, merge occurs.
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Log-Structured Storage

• MemTable can be any data structure:

• A sorted list or B+-tree.

• Supports in-place updates.

• If something found in MemTable, then we have quick access.

• As MemTable has limited size, so once full, it needs to be sent to the disk and a 
new Memtable is created.
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Log-Structured Storage

Memory Disk

Initially, our system looks 
like this. We have an 
empty MemTable.
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Log-Structured Storage

Memory Disk

1 v1

Say, we insert record (1,v1).

Key Value



28

Log-Structured Storage

Memory Disk

1 v1

5 a1

Next, insert record (5,a1).
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Log-Structured Storage

Memory Disk

1 v1

5 a1

8 b1

Next, insert record (8,b1).
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Log-Structured Storage

Memory Disk

1 v2

5 a1

8 b1

Next, update record (1,v2).

We can do in-place update!
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Log-Structured Storage

Memory Disk

1 v1

5 a1

8 b1

Next, insert record (2,v1). 
What should we do?
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Log-Structured Storage

Memory Disk

2 v1

Create a new MemTable 
and add (2,v1).

1 v1

5 a1

8 b1
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Log-Structured Storage

Memory Disk

2 v1

Convert the old MemTable 
to SSTable and push to disk. 
Records need to be sorted.

1 v1

5 a1

8 b1

1 v1

5 a1

8 b1

Level 0
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Log-Structured Storage

Memory Disk

2 v1

8 b2

1 v1

5 a1

8 b1

Level 0
Next, insert record (8,b2).
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Log-Structured Storage

Memory Disk

2 v1

4 b1

8 b2

1 v1

5 a1

8 b1

Level 0
Next, insert record (4,b1).
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Log-Structured Storage

Memory Disk

3 c1

1 v1

5 a1

8 b1

Level 0
Next, insert record (3,c1).

2 v1

4 b1

8 b2
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Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
Let's assume at some point 
of time our this MemTable 
is also full.

2 v1

4 b1

8 b2
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Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
So we will push this 
MemTable also to Disk.

2 v1

4 b1

8 b2
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Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
But, say my Level 0 on disk 
can hold only 2 SSTables. 
So what should we do?

2 v1

4 b1

8 b2
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Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
Merge tables at Level 0, 
and push merged table to 
Level 1.

1 v1

2 v1

4 b1

5 a1

8 b2

2 v1

4 b1

8 b2

Level 1
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Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
Merge tables at Level 0, 
and push merged table to 
Level 1.

1 v1

2 v1

4 b1

5 a1

8 b2

2 v1

4 b1

8 b2

Level 1

Essentially, the idea is that Level 
1 can hold far greater number of 
records than Level 0.



Log-Structured Storage

Memory Disk

5 a2

10 a2

12 b2

Level 0
Similarly, when Level 1 is 
full, we merge Level 1 
SSTables to Level 2.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



• The number of levels depend on the database.

• Generally, at most 7 levels.

• Size of each level up to the administrator.

• Merges happen asynchronously.
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Log-Structured Storage



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to search 
a record 5 (get value 
corresponding to 5).

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
First, go to the 
MemTable and see if it 
exists!

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to search 
a record 4.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
First, go to the 
MemTable and see if it 
exists!

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Unfortunately, it does 
not. So, we go to disk 
Level 0.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Found 4.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to search 
a record 6.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
First, go to the 
MemTable and see if it 
exists!

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Unfortunately, it does 
not. So, we go to disk 
Level 0.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Does not exist at even 
Level 0. So, we go to 
disk Level 1.



Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Two SSTables at Level 
1, so which to search 
first? Try newest!



• What are the limitations of this search process?
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Log-Structured Storage: Search



• What are the limitations of this search process?

• Manually traverse over all the tables in each level.

• Search all levels until you find the record.
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Log-Structured Storage: Search



• How can we do better?
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Log-Structured Storage: Search



• How can we do better?

• Two design optimizations:

• Range Pointer

• Bloom filter
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Log-Structured Storage: Search



• How can we do better?

• Two design optimizations:

• Range Pointer:

• Tells the minimum and maximum key identifiers in a table.

• Bloom filter:

• Tells if a record exists of not.
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Log-Structured Storage: Search



Log-Structured Storage: Delete

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to delete 
a record 5.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Delete

Memory Disk

5

10 a2

12 b2

Level 0
First, go to the MemTable 
and see if it exists! 

If it does, then add a 
tombstone.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



Log-Structured Storage: Delete

Memory Disk

5 a2

10 a2

Level 0
Say, we want to delete 
a record 4.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



5 a2

4

10 a2

Log-Structured Storage: Delete

Memory Disk

Level 0
First, go to the MemTable 
and see if it exists! 

Record 4 does not exist, 
so create an entry with 
tombstone. 1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3



• So what happens to this tombstone or the deleted record once the MemTable is full?
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Log-Structured Storage: Delete



• So what happens to this tombstone or the deleted record once the MemTable is full?

• This tombstone will trickle down to SSTables. 

• The most recent entry for record 4 will indicate a tombstone, which means the 
record is deleted.
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Log-Structured Storage: Delete



• If you have a lot of insert operations, LSM-tree is good for you.

• But, if you have read-then-write type updates, then it is expensive as you will have 
to fetch the record, check the value, and then update.

• For example, a query that states, find all employees with salary > 100.

• Deletes again are cheap.
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Log-Structured Storage: Complexity



• Merge operation helps in compaction and reduce size.

• Too many redundant entries make it hard to search or update.

• When to merge?

• Definitely when the level is full.

• You can also merge whenever there are more than one table at a level.
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Log-Structured Storage: Merge



• How to merge two SSTables?

68

Log-Structured Storage: Merge Algorithm



• How to merge two SSTables?

• Have two iterators, and sequentially scan.

• As entries in both the tables are sorted, so each to merge.
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Log-Structured Storage: Merge Algorithm



70

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

Take one entry 
of this table

Go over all entries 
of this table.

Stop the search if 
the key is greater.
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

Take one entry 
of this table

Go over all entries 
of this table.

Stop the search if 
the key is greater.
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

Take one entry 
of this table

Go over all entries 
of this table.

Stop the search if 
the key is greater.
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

Take one entry 
of this table

Go over all entries 
of this table.

Stop the search if 
the key is greater.
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

3 c1

Take one entry 
of this table

Go over all entries 
of this table.

Stop the search if 
the key is greater.
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

3 c1

4 b2

Take one entry 
of this table

Go over all entries 
of this table.

Stop the search if 
the key is greater.
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Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

3 c1

4 b2

5

8 b2

12 c3
Take one entry 

of this table
Go over all entries 

of this table.

Stop the search if 
the key is greater.
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NoSQL Databases



• As the name suggests, by default do not support SQL.

• The idea became popular from Facebook.

• Today, an extensive number of popular databases are NoSQL.

• These databases have only two operations: get() and put().

• Get() – Searching or looking up a record in the database.

• Put() – Writing or updating a record in the database.
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NoSQL Databases



• The design of LSM-trees became popular through NoSQL databases like RocksDB, 
LevelDB.

• NoSQL database consists of just a pair → (key, value)
• Key → record identifier, possibly a number.

• Value → Any information about the record.

• How do you implement a NoSQL database?

• You can use an ordered hash-map, or an array, or a vector!

80

NoSQL Databases
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