
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 7:

LSM Trees

Assignment 1 is Out!
Deadline: Today! Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

2

Some Lectures Ago…

• We learnt how data is stored in disks.

• We learnt how records are mapped across pages.

3

• We saw the following structure for storing records in a page.

• Block header kept track of records and the free space.

4

Mapping Records to Disk Blocks

#Entries Free
Space

Records

Size

Block Header

Location

• This layout scheme is also called as slotted pages.

• It is one of the most common record storage and tracking scheme.

• These pointer arrows are relative offsets to the specific location.

5

Slotted Pages

#Entries 1 2 3 4 Free
Space

Records

Size

Slot Array

Location

• These pointer arrows are relative offsets to the specific location.

• Blue arrow represents the direction in which slot array and records can grow (use
the free space)

6

Slotted Pages

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location

• How to delete a record in this record layout scheme.

• Say, we want to delete record 3. What do you think will happen?

7

Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location

• Generally, following are the steps, which databases take:

• Delete the record and remove the pointer to the record from the slot array.

• Reorganize or garbage collect if necessary.

• “If necessary”? Depends on the database.

8

Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location

• For example, in Postgres, how will record 3 get deleted?

9

Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location

• Record 3 and the pointer to record 3 are removed.

• Then what?

10

Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 2 1

Records

Size

Slot Array

Location

• Let’s try to add a new record 5.

• Where do you think record 5 will get added?

11

Slotted Pages: Record Deletion & Insertion

#Entries 1 2 3 4 4 2 1

Records

Size

Slot Array

Location

• In Postgres, record 5 gets added in the free space.

• Does not use the existing free locations.

• Then how can we reclaim this empty slot?

12

Slotted Pages: Record Deletion & Insertion

#Entries 1 2 3 4 5 5 4 2 1

Records

Size

Slot Array

Location

• In Postgres, call the garbage collection operation.

• Post garbage collection, pointer reordering and record reorganization.

13

Slotted Pages: Record Deletion & Insertion

#Entries 1 2 3 4 5 4 2 1

Records

Size

Slot Array

Location

• This notion of delayed compaction post deletion is pretty common.

• Databases like Postgres, Sqlite, and Oracle do not compact unless required or an
explicit call to compaction.

• However, what do you think happens in other databases, for example: SQLServer?

14

Slotted Pages: Delayed Compaction

• Lets try to delete Record 3 in SQLServer.

15

Slotted Pages: Record Deletion

#Entries 1 2 3 4 4 3 2 1

Records

Size

Slot Array

Location

• Lets try to delete Record 3 in SQLServer.

• Post deletion, it actively performs compaction.

16

Slotted Pages: Record Deletion

#Entries 1 2 3 4 2 1

Records

Size

Slot Array

Location

• Slotted pages layout tells us how the records are stored in a page, but how do we
insert or delete records in a page.

• In Lecture 3, we discussed sequential file organization, where we said that all the
records are stored sequentially in a table.

• We discussed how records are inserted and deleted in this sequential file
organization.

• Lets go one step deeper!

17

Record-Oriented Storage

• Steps to insert a new record in the page?

18

Record-Oriented Storage

• Steps to insert a new record in the page?

• Search page directory to find a page with a free slot.

• If the page not in memory, fetch it from the disk.

• Check slot array to find empty space in page that will fit.

19

Record-Oriented Storage

• Steps to update an existing record using its record id?

• Search page directory to find the location of page (pointer to the page).

• If the page not in memory, fetch it from the disk.

• Find offset to the record using slot array in the page.

• If new data fits, overwrite existing data.

• Otherwise, mark existing tuple as deleted and insert new version in a different

page.

20

Record-Oriented Storage

• Fragmentation:

• Not all pages are fully utilized → unusable space and empty slots.

• Expensive Disk Fetching:

• To update one record, entire page needs to be fetched from the disk.

• Random Disk Fetches:

• Say you want to update multiple unrelated tuples.

• You would end up fetching multiple pages from disk → Too expensive!

• How about no possibility of in-place updates?

• In-place updates essentially means that you can overwrite a record.

• But a lot of systems prohibit in-place updates, e.g. HDFS, Google Colossus.

• These systems support append-only → you can only insert a new copy of the
record. 21

Challenges for Record-Oriented Storage

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

22

Log-Structured Merge Trees

• Originally proposed as log-structure merge trees (LSM Trees) in 1996.

• Designed to support efficient write (update) operations.

• Essentially, records are stored in a log-style data structure.

• Each record is represented as a (key, value) pair.

• Key is the record ID.

• Value could be one single value, or a tuple corresponding to all the records.

• Unlike record-oriented architecture where we were updating in-place, we now
append a new entry.

• In future, we will asynchronously merge values. 23

Log-Structured Storage

https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree

24

Log-Structured Storage

Memory Disk

• All operations start at memory:
search, insert, update, delete.

• All operations occur in an-memory
table → MemTable.

• When MemTable becomes full or you
can’t find something in MemTable,
then move to disk.

• When something not exists in
memory, then move to disk.

• If memory is full, then create an on-
disk table → SSTable.

• Disk is divided into multiple levels →
Hierarchical structure.

• When a level gets full, merge occurs.

25

Log-Structured Storage

• MemTable can be any data structure:

• A sorted list or B+-tree.

• Supports in-place updates.

• If something found in MemTable, then we have quick access.

• As MemTable has limited size, so once full, it needs to be sent to the disk and a
new Memtable is created.

26

Log-Structured Storage

Memory Disk

Initially, our system looks
like this. We have an
empty MemTable.

27

Log-Structured Storage

Memory Disk

1 v1

Say, we insert record (1,v1).

Key Value

28

Log-Structured Storage

Memory Disk

1 v1

5 a1

Next, insert record (5,a1).

29

Log-Structured Storage

Memory Disk

1 v1

5 a1

8 b1

Next, insert record (8,b1).

30

Log-Structured Storage

Memory Disk

1 v2

5 a1

8 b1

Next, update record (1,v2).

We can do in-place update!

31

Log-Structured Storage

Memory Disk

1 v1

5 a1

8 b1

Next, insert record (2,v1).
What should we do?

32

Log-Structured Storage

Memory Disk

2 v1

Create a new MemTable
and add (2,v1).

1 v1

5 a1

8 b1

33

Log-Structured Storage

Memory Disk

2 v1

Convert the old MemTable
to SSTable and push to disk.
Records need to be sorted.

1 v1

5 a1

8 b1

1 v1

5 a1

8 b1

Level 0

34

Log-Structured Storage

Memory Disk

2 v1

8 b2

1 v1

5 a1

8 b1

Level 0
Next, insert record (8,b2).

35

Log-Structured Storage

Memory Disk

2 v1

4 b1

8 b2

1 v1

5 a1

8 b1

Level 0
Next, insert record (4,b1).

36

Log-Structured Storage

Memory Disk

3 c1

1 v1

5 a1

8 b1

Level 0
Next, insert record (3,c1).

2 v1

4 b1

8 b2

37

Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
Let's assume at some point
of time our this MemTable
is also full.

2 v1

4 b1

8 b2

38

Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
So we will push this
MemTable also to Disk.

2 v1

4 b1

8 b2

39

Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
But, say my Level 0 on disk
can hold only 2 SSTables.
So what should we do?

2 v1

4 b1

8 b2

40

Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
Merge tables at Level 0,
and push merged table to
Level 1.

1 v1

2 v1

4 b1

5 a1

8 b2

2 v1

4 b1

8 b2

Level 1

41

Log-Structured Storage

Memory Disk

3 c1

4 b2

8 b3

1 v1

5 a1

8 b1

Level 0
Merge tables at Level 0,
and push merged table to
Level 1.

1 v1

2 v1

4 b1

5 a1

8 b2

2 v1

4 b1

8 b2

Level 1

Essentially, the idea is that Level
1 can hold far greater number of
records than Level 0.

Log-Structured Storage

Memory Disk

5 a2

10 a2

12 b2

Level 0
Similarly, when Level 1 is
full, we merge Level 1
SSTables to Level 2.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

• The number of levels depend on the database.

• Generally, at most 7 levels.

• Size of each level up to the administrator.

• Merges happen asynchronously.

43

Log-Structured Storage

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to search
a record 5 (get value
corresponding to 5).

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
First, go to the
MemTable and see if it
exists!

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to search
a record 4.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
First, go to the
MemTable and see if it
exists!

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Unfortunately, it does
not. So, we go to disk
Level 0.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Found 4.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to search
a record 6.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
First, go to the
MemTable and see if it
exists!

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0
Unfortunately, it does
not. So, we go to disk
Level 0.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Does not exist at even
Level 0. So, we go to
disk Level 1.

Log-Structured Storage: Search

Memory Disk

5 a2

10 a2

12 b2

Level 0

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Two SSTables at Level
1, so which to search
first? Try newest!

• What are the limitations of this search process?

55

Log-Structured Storage: Search

• What are the limitations of this search process?

• Manually traverse over all the tables in each level.

• Search all levels until you find the record.

56

Log-Structured Storage: Search

• How can we do better?

57

Log-Structured Storage: Search

• How can we do better?

• Two design optimizations:

• Range Pointer

• Bloom filter

58

Log-Structured Storage: Search

• How can we do better?

• Two design optimizations:

• Range Pointer:

• Tells the minimum and maximum key identifiers in a table.

• Bloom filter:

• Tells if a record exists of not.

59

Log-Structured Storage: Search

Log-Structured Storage: Delete

Memory Disk

5 a2

10 a2

12 b2

Level 0
Say, we want to delete
a record 5.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Delete

Memory Disk

5

10 a2

12 b2

Level 0
First, go to the MemTable
and see if it exists!

If it does, then add a
tombstone.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

Log-Structured Storage: Delete

Memory Disk

5 a2

10 a2

Level 0
Say, we want to delete
a record 4.

1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

5 a2

4

10 a2

Log-Structured Storage: Delete

Memory Disk

Level 0
First, go to the MemTable
and see if it exists!

Record 4 does not exist,
so create an entry with
tombstone. 1 v1

2 v1

4 b1

5 a1

8 b2

Level 1

1 v2

3 c1

6 c1

10 a1

12 b1

Level 2

3 c2

4 b3

8 b3

• So what happens to this tombstone or the deleted record once the MemTable is full?

64

Log-Structured Storage: Delete

• So what happens to this tombstone or the deleted record once the MemTable is full?

• This tombstone will trickle down to SSTables.

• The most recent entry for record 4 will indicate a tombstone, which means the
record is deleted.

65

Log-Structured Storage: Delete

• If you have a lot of insert operations, LSM-tree is good for you.

• But, if you have read-then-write type updates, then it is expensive as you will have
to fetch the record, check the value, and then update.

• For example, a query that states, find all employees with salary > 100.

• Deletes again are cheap.

66

Log-Structured Storage: Complexity

• Merge operation helps in compaction and reduce size.

• Too many redundant entries make it hard to search or update.

• When to merge?

• Definitely when the level is full.

• You can also merge whenever there are more than one table at a level.

67

Log-Structured Storage: Merge

• How to merge two SSTables?

68

Log-Structured Storage: Merge Algorithm

• How to merge two SSTables?

• Have two iterators, and sequentially scan.

• As entries in both the tables are sorted, so each to merge.

69

Log-Structured Storage: Merge Algorithm

70

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

71

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

Take one entry
of this table

Go over all entries
of this table.

Stop the search if
the key is greater.

72

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

Take one entry
of this table

Go over all entries
of this table.

Stop the search if
the key is greater.

73

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

Take one entry
of this table

Go over all entries
of this table.

Stop the search if
the key is greater.

74

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

Take one entry
of this table

Go over all entries
of this table.

Stop the search if
the key is greater.

75

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

3 c1

Take one entry
of this table

Go over all entries
of this table.

Stop the search if
the key is greater.

76

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

3 c1

4 b2

Take one entry
of this table

Go over all entries
of this table.

Stop the search if
the key is greater.

77

Log-Structured Storage: Merge Algorithm

1 v1

2 v1

4 b1

5 a1

8 b2

1 v2

3 c1

4 b2

5

12 c3

1 v2

2 v1

3 c1

4 b2

5

8 b2

12 c3
Take one entry

of this table
Go over all entries

of this table.

Stop the search if
the key is greater.

78

NoSQL Databases

• As the name suggests, by default do not support SQL.

• The idea became popular from Facebook.

• Today, an extensive number of popular databases are NoSQL.

• These databases have only two operations: get() and put().

• Get() – Searching or looking up a record in the database.

• Put() – Writing or updating a record in the database.

79

NoSQL Databases

• The design of LSM-trees became popular through NoSQL databases like RocksDB,
LevelDB.

• NoSQL database consists of just a pair → (key, value)
• Key → record identifier, possibly a number.

• Value → Any information about the record.

• How do you implement a NoSQL database?

• You can use an ordered hash-map, or an array, or a vector!

80

NoSQL Databases

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 1 is Out! Deadline: Today! Oct 28, 2025 at 11:59pm Start collaborating with your groups!
	Slide 3: Some Lectures Ago…
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

