
Database Processing
CS 451 / 551

Suyash Gupta

Assistant Professor

Distopia Labs and ONRG

Dept. of Computer Science

(E) suyash@uoregon.edu

(W) gupta-suyash.github.io

Lecture 8:

Workloads, Storage Models, and Filters

Assignment 1 is Out!
Deadline: Today! Oct 28, 2025 at 11:59pm

Start collaborating with your groups!

2

How to plan your Database Design

• What is the information you need to decide how your data should be stored or how
should you allow access to your data?

• You need to know about the workloads that your database may encounter?

• Type of queries your clients may send.

• Type of data you may want to input to your data.

• The frequency of data input versus data analysis.

3

Database Workloads

• The design of your database is often based on the workload.

• Workload by definition means the queries or inputs to your database.

• It can imply read or write queries.

• Database Workloads can be broadly sub-divided into three categories:

• OLTP → On-Line Transaction Processing

• OLAP → On-Line Analytical Processing

• HTAP → Hybrid Transaction + Analytical Processing

4

On-Line Transaction Processing

• OLTP Workloads are the most common type of database workloads.

• They comprise of fast, simple read and write operations.

• You can think of these workloads as write-heavy.

• Essentially, when you design your database, this is the first type of workloads you
will target.

• Help you to gauge performance of insertion, deletion, and simple queries.

5

Wikipedia Example

6

create table useracct (
 userID int primary key,
 userName varchar unique,
 …
);

create table pages (
 pageID int primary key,
 title varchar unique,
 latest int,
 references revisions (revID)
);

create table revisions (
 revID int primary key,
 userID int,
 references useracct (userID),
 pageID int,
 references pages (pageID),
 content text,
 updated datetime
);

OLTP Queries

7

select p.*, r.*
from pages as p
inner join
revisions as r
on p.latest = r.revID
where p.pageID = 10

update useracct
set
lastlogin = now(),
hostname = 10.1.1.9
where userid = “Voldemort”

insert into revisions
values
(?,?…,?)

On-Line Analytical Processing

• OLAP Workloads help to perform analysis on your database.

• They comprise of complex queries that help you to learn useful information from
your database.

• This can also be termed as data mining → you are trying to mine patterns or
knowledge from your database.

8

OLAP Queries

9

select count(u.lastlogin),
extract(month from u.lastlogin) as month
from useracct as u
where u.hostname like '%.gov’
group by extract(month from u.lastlogin)

Storage Models

• Until now, we discussed how data is stored in pages and how records are arranged
in a page or disk.

• But, we are yet to discuss about the different storage models.

• These storage models help the database designer decide what is the right way for
storing the records of their database.

• Does your database targets OLAP or OLTP or HTAP?

• These decisions help you select an appropriate storage model.

10

Storage Models

• Storage Models can be broadly divided into three categories:

• N-ary Storage Model (NSM)

• Decomposition Storage Model (DSM)

• Hybrid Storage Model (PAX)

11

N-ary Storage Models

• So how does an N-ary storage model look?

• In NSM, you store the full record contiguously.

• All the attributes (columns) of the record are stored together in the same page.

• This design is also called as row-store.

12

N-ary Storage Models

• NSM is useful for which type of database workload?

• NSM is useful for OLTP workloads.

• You would like to have queries that try to fetch multiple or all attributes of the
record.

• Further, NSM is ideal for write-heavy queries.

13

Slotted Pages

14

#Entries Free
Space

Records

Size

Block Header

Location

• Last class, we saw this slotted pages architecture for storing records.

Slotted Pages

15

#Entries Free
Space

Records

Size

Block Header

Location

• Last class, we saw this slotted pages architecture for storing records.

• If we want to store records according to NSM, then how will we proceed?

Slotted Pages

16

#Entries Free
Space

Records

Size

Block Header

Location

5 Voldemort 70

Say, we have the following record. Storing it in NSM requires storing all the attributes
of the record contiguously.

Slotted Pages

17

#Entries Free
Space

header

5 Voldemort 70

Records

Size

Block Header

Location

5 Voldemort 70

Say, we have the following record. Storing it in NSM requires storing all the attributes
of the record contiguously.

Slotted Pages

18

#Entries Free
Space

header

5 Voldemort 70

Records

Size

Block Header

Location

5 Voldemort 70

Say, we have the following record. Storing it in NSM requires storing all the attributes
of the record contiguously.

This header informs
which attribute is null

Slotted Pages

19

8 Gru 55

Now lets add another record.

#Entries Free
Space

header

5 Voldemort 70

Records

Size

Block Header

Location

Slotted Pages

20

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

8 Gru 55

Now lets add another record.

Slotted Pages

21

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

8 Gru 55

Now lets add another record.

We can use this process to
continue adding records
until the page is full.

Slotted Pages

22

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

8 Gru 55

Now lets add another record.

Notice that it does not
matter if the attribute is
fixed or variable-length.

OLTP on NSM

• Let’s try to run an OLTP query on our NSM architecture.

select * from cs_employees

where age > 50;

23

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

OLTP on NSM

• Let’s try to run an OLTP query on our NSM architecture.

select * from cs_employees

where age > 50;

24

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

This query is perfect for
NSM as we want to
access all the attributes.

OLTP on NSM

• Or, how about an OLTP insert query on our NSM architecture.

insert into cs_employees values

(9, Kang, 100);

25

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

OLTP on NSM

• Or, how about an OLTP insert query on our NSM architecture.

insert into cs_employees values

(9, Kang, 100);

26

#Entries Free
Space

header header

8 Gru 55 5 Voldemort 70

Records

Size

Block Header

Location

This query is also good
for NSM as we want to
insert a new record.

OLAP on NSM

• Let’s try to run an OLAP query on our NSM architecture.

select avg(age) from cs_employees

group by title having avg(age) > 50;

27

#Entries Free
Space

header header

8 Gru 55 Asst 5 Voldemort 70 Assoc

Records

Size

Block Header

Location

OLAP on NSM

• Let’s try to run an OLAP query on our NSM architecture.

select avg(age) from cs_employees

group by title having avg(age) > 50;

28

#Entries Free
Space

header header

8 Gru 55 Asst 5 Voldemort 70 Assoc

Records

Size

Block Header

Location

This query is not suitable for NSM
as we need to traverse all the
records and every attribute when
we need only two attributes.

N-ary Storage Models

• Advantages

• Fast inserts, updates, and deletes.

• Good for queries that need the entire record.

• Disadvantages

• Yield poor performance for queries that access only a subset of attributes.

• Poor memory locality in access patterns.

• Not ideal for compression because of multiple value domains within a single
page.

29

Decomposition Storage Models

• So how do DSM look?

• In DSM, each page only stores one attribute for all the records.

• This design is also called as column-store.

• In your assignment, you are following the column-store design.

30

Decomposition Storage Models

• DSM is useful for which type of database workload?

• DSM is useful for OLAP workloads.

• You would like to have queries that try to fetch a small subset of all the attributes of
the record.

• Further, DSM is ideal for read-heavy queries → Queries where the goal is to
perform analysis.

• It is the job of the DBMS to combine/split the attributes of a record when
reading/writing. 31

Records in DSM

#Entries Free
Space

Records

Size

Block Header

Location

5 Voldemort 70

Say, we have the following record. Storing it in DSM requires storing all the attributes
of the record contiguously.

#Entries Free
Space

#Entries Free
Space

Page 1

Page 2

Page 3

Notice that we have
three different pages,
one for each attribute.

Records in DSM

#Entries Free
Space 5

Records

Size

Block Header

Location

5 Voldemort 70

Say, we have the following record. Storing it in DSM requires storing all the attributes
of the record contiguously.

#Entries Free
Space Voldemort

#Entries Free
Space 70

Page 1

Page 2

Page 3

Each attribute goes to
its own page

Records in DSM

#Entries Free
Space 5

Records

Size

Block Header

Location

8 Gru 55

Now, lets add another record.

#Entries Free
Space Voldemort

#Entries Free
Space 70

Page 1

Page 2

Page 3

Records in DSM

#Entries Free
Space 8 5

Records

Size

Block Header

Location

8 Gru 55

Now, lets add another record.

#Entries Free
Space Gru Voldemort

#Entries Free
Space 55 70

Page 1

Page 2

Page 3

Records in DSM

#Entries Free
Space 8 5

Records

Size

Block Header

Location

8 Gru 55

Now, lets add another record.

#Entries Free
Space Gru Voldemort

#Entries Free
Space 55 70

Page 1

Page 2

Page 3

In each page, the
header informs about
the record position.

Decomposition Storage Models

• Storing fixed-length attributes is easy as we can have relative offsets.

• Remember, relative offsets inform about the position of the record.

• But, how will you store variable-length attributes?

37

Decomposition Storage Models

• Solution 1:

• Store the offset and length of the attribute.

• Bad idea, too much storage per attribute.

• Solution 2:

• Add some padding to each value to ensure each value has a fixed length.

• Waste of space!

• Solution 3:

• Use compression techniques to ensure each attribute value is of the same size.

38

OLAP on DSM

• Makes sense to do OLAP on DSM!

• Remember our earlier query, if we run that query on a DSM, then only a subset of
attributes need to be fetched from disk!

39

Decomposition Storage Models

• Advantages

• Reduces the amount wasted I/O per query because the DBMS only reads the data
that it needs.

• Faster query processing because of increased locality.

• Better data compression.

• Disadvantages

• Slow for point queries, inserts, updates, and deletes because of attribute
splitting/stitching.

40

So can we do something better?

• We know that rarely a query will touch only one attribute or all attributes.

• So what can be a better design?

41

Partition Attributes Across (PAX)

• PAX is a hybrid model.

• It first splits rows into groups, and within each group all the attributes are stored as
DSM.
• Horizontally partition rows into groups, then vertically partition columns.

• Aim is to permit faster processing on columnar storage while retaining the spatial
locality benefits of row storage.

• Example database: Parquet, ORC, and Arrow.

42

Records in DSM

5 8 Voldemort Gru 70 55

5 Voldemort 70

8 Gru 55

12 Kang 100

20 Anakin 40

Now, lets add another record.

Page 1

Page 2
12 20 Kang Anakin 100 40

Filters and Indexes

44

Bloom Filters

• We saw that bloom filter can be used to optimize search in LSM-trees.

• So, what is a bloom filter?

• It is a probabilistic bitmap, which informs about existence of a key.

• If the key exists, bloom filter will say yes (true positive).

• If the key exists, bloom filter will not say no (no false negatives).

• If the key does not exist, bloom filter may say yes (possible false positives).

45

Bloom Filters

• How to calculate the size of your bloom filter?

• You need to know the following:

• Number of items in the bloom filter

• What is the desirable probability of false positives?

• Number of hash functions.

• Then use this tool.

46

https://hur.st/bloomfilter/

Insertions in Bloom Filters

47Say, this is our bloom filter with 7 bits.

0 1 2 3 4 5 6

Insertions in Bloom Filters

48Say, we have two hash functions for mapping.

0 1 2 3 4 5 6

𝒉𝟏 𝒌𝒆𝒚 𝒉𝟐 𝒌𝒆𝒚

Insertions in Bloom Filters

49Let’s add a key “abc” to the bloom filter.

0 1 2 3 4 5 6

𝒉𝟏 𝒂𝒃𝒄 𝒉𝟐 𝒂𝒃𝒄

Insertions in Bloom Filters

50

1 1

Let’s add a key “abc” to the bloom filter.

0 1 2 3 4 5 6

𝒉𝟏 𝒂𝒃𝒄 𝒉𝟐 𝒂𝒃𝒄

h1(abc) = 1
h2(abc) = 4

Insertions in Bloom Filters

51

1 1 1

Let’s add a key “xyz” to the bloom filter.

0 1 2 3 4 5 6

𝒉𝟏 𝒙𝒚𝒛 𝒉𝟐 𝒙𝒚𝒛

h1(abc) = 1
h2(abc) = 4

h1(xyz) = 3
h2(xyz) = 4

Search in Bloom Filters

52

1 1 1

Let’s search for the key “xyz”.

0 1 2 3 4 5 6

𝒉𝟏 𝒙𝒚𝒛 𝒉𝟐 𝒙𝒚𝒛

h1(abc) = 1
h2(abc) = 4

h1(xyz) = 3
h2(xyz) = 4

Search in Bloom Filters

53

1 1 1

Let’s search for the key “xyz”.

0 1 2 3 4 5 6

𝒉𝟏 𝒙𝒚𝒛 𝒉𝟐 𝒙𝒚𝒛

h1(abc) = 1
h2(abc) = 4

h1(xyz) = 3
h2(xyz) = 4

Key found → True positive!

Search in Bloom Filters

54

1 1 1

Let’s search for the key “uvw”.

0 1 2 3 4 5 6

𝒉𝟏 𝒖𝒗𝒘 𝒉𝟐 𝒖𝒗𝒘

h1(abc) = 1
h2(abc) = 4

h1(xyz) = 3
h2(xyz) = 4

Search in Bloom Filters

55

1 1 1

Let’s search for the key “uvw”.

0 1 2 3 4 5 6

𝒉𝟏 𝒖𝒗𝒘 𝒉𝟐 𝒖𝒗𝒘

h1(abc) = 1
h2(abc) = 4

h1(xyz) = 3
h2(xyz) = 4

h1(uvw) = 1
h2(uvw) = 3

Search in Bloom Filters

56

1 1 1

Let’s search for the key “uvw”.

0 1 2 3 4 5 6

𝒉𝟏 𝒖𝒗𝒘 𝒉𝟐 𝒖𝒗𝒘

h1(abc) = 1
h2(abc) = 4

h1(xyz) = 3
h2(xyz) = 4

h1(uvw) = 1
h2(uvw) = 3

Key found??
Should not happen → False positive!

Deletions in Bloom Filters

• How to delete something from the bloom filter?

• Extremely dangerous!

• To delete some key, you need to set the corresponding bits to 0.

• But, it can lead to marking some other key as does not exist.

• Deletions can lead to false negatives!

57

Deletions in Bloom Filters

• How to delete something from the bloom filter?

• Extremely dangerous!

• To delete some key, you need to set the corresponding bits to 0.

• But, it can lead to marking some other key as does not exist.

• Deletions can lead to false negatives!

• Possible solutions?

58

Counting Bloom Filters

• Instead of setting each bit as 0 or 1, now we store a counter for each bit.

• Each time a hash function points to a bit, increment the counter for that bit.

• Each bit’s counter starts from 0 → every time hash function tells you a bit,
increment its counter!

• The value of the counter tells you possible number of keys that have caused it to
increment.

59

Counting Bloom Filters

• Can there be false positives?

• Yes, because the counter values does not tell existence of which specific key.

• Is deletion possible?

• Yes, deletion is possible by decrementing the counter.

60

Skip Lists

61

Skip Lists

• So, some lectures ago, we discussed ways to search a key from this sorted list?

62

6 8 12 19 23 34 45 67 76 78 83 98

Skip Lists

• What were the possible solutions?

• Binary Search

• BST

• B+-Tree

63

6 8 12 19 23 34 45 67 76 78 83 98

Skip Lists

• Can we do something better in the context of memory?

64

6 8 12 19 23 34 45 67 76 78 83 98

Skip Lists

• Can we do something better in the context of memory?

• B+-Tree are great but require rebalancing.

• Use a lot of memory → Main memory is way smaller than disk.

65

6 8 12 19 23 34 45 67 76 78 83 98

Skip Lists

• Any good solution will also help to improve searching from the MemTable
(LSMTrees), which is stored in the memory.

66

Skip Lists

• For such specific settings, a skip list can be useful.

67

Skip Lists

• Skip list has a search complexity of 𝑶 𝒍𝒐𝒈 𝑵 ,
• where N is the number of elements.

68

Skip Lists

• Why Skip list?

• A multi-level list, where each level skips almost half the number of keys in the
previous level.

• Level 1 → N keys

• Level 2 → N/2 keys

• Level 3 → N/4 keys

• This is why Skip List is also called a probabilistic data

• You toss a coin and decide whether to add a key to a level or not.

• If coin toss is 1, you add the key to the higher level.

• At each level you keep tossing and moving up till you get a 0.

69

Skip Lists

70

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Lets try to insert keys to an empty skip list with 3 levels.

Skip Lists

71

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Lets insert 6 by tossing a coin.

Skip Lists

72

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Say coin toss is 0, so we only insert 6 at Level 1.

6

Skip Lists

73

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Lets insert 23 and say coin toss is 0.

6 23

Skip Lists

74

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Lets insert 8 and say coin toss is 1.

6 23

Skip Lists

75

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

First, we insert 8 as Level 1 and then move to Level 2.

6 8 23

Skip Lists

76

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

We again toss the coin, and say it is now 0, so we insert 8 at Level 2 and stop

6 8 23

8

Skip Lists

77

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Let’s insert a value 12 and say coin toss is 0, so we stop at Level 1.

6 8 12 23

8

Skip Lists

78

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Let’s insert a value 19 and say coin toss is 1, so we move to Level 2.

6 8 12 19 23

8

Skip Lists

79

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Say coin toss is again 1, so we move to Level 3.

6 8 12 19 23

8 19

Skip Lists

80

Level 1
(N keys)

Level 3
(N/4 keys)

Level 2
(N/2 keys)

Now, we insert at Level 3.

6 8 12 19 23

8 19

19

Search in Skip Lists

• To search a key in the skip list:

• Start from the top most level.

• Then, you need to search only in the nodes at the left or right side.

• Probability of reduction of search space at each level is by half.

81

Deletion in Skip Lists

• To delete in a skip list, do it carefully.

• We first mark the entry to be deleted → add a tombstone.
• Then start deleting the entry from the topmost level.

82

	Slide 1: Database Processing CS 451 / 551
	Slide 2: Assignment 1 is Out! Deadline: Today! Oct 28, 2025 at 11:59pm Start collaborating with your groups!
	Slide 3: How to plan your Database Design
	Slide 4: Database Workloads
	Slide 5: On-Line Transaction Processing
	Slide 6: Wikipedia Example
	Slide 7: OLTP Queries
	Slide 8: On-Line Analytical Processing
	Slide 9: OLAP Queries
	Slide 10: Storage Models
	Slide 11: Storage Models
	Slide 12: N-ary Storage Models
	Slide 13: N-ary Storage Models
	Slide 14: Slotted Pages
	Slide 15: Slotted Pages
	Slide 16: Slotted Pages
	Slide 17: Slotted Pages
	Slide 18: Slotted Pages
	Slide 19: Slotted Pages
	Slide 20: Slotted Pages
	Slide 21: Slotted Pages
	Slide 22: Slotted Pages
	Slide 23: OLTP on NSM
	Slide 24: OLTP on NSM
	Slide 25: OLTP on NSM
	Slide 26: OLTP on NSM
	Slide 27: OLAP on NSM
	Slide 28: OLAP on NSM
	Slide 29: N-ary Storage Models
	Slide 30: Decomposition Storage Models
	Slide 31: Decomposition Storage Models
	Slide 32: Records in DSM
	Slide 33: Records in DSM
	Slide 34: Records in DSM
	Slide 35: Records in DSM
	Slide 36: Records in DSM
	Slide 37: Decomposition Storage Models
	Slide 38: Decomposition Storage Models
	Slide 39: OLAP on DSM
	Slide 40: Decomposition Storage Models
	Slide 41: So can we do something better?
	Slide 42: Partition Attributes Across (PAX)
	Slide 43: Records in DSM
	Slide 44: Filters and Indexes
	Slide 45: Bloom Filters
	Slide 46: Bloom Filters
	Slide 47: Insertions in Bloom Filters
	Slide 48: Insertions in Bloom Filters
	Slide 49: Insertions in Bloom Filters
	Slide 50: Insertions in Bloom Filters
	Slide 51: Insertions in Bloom Filters
	Slide 52: Search in Bloom Filters
	Slide 53: Search in Bloom Filters
	Slide 54: Search in Bloom Filters
	Slide 55: Search in Bloom Filters
	Slide 56: Search in Bloom Filters
	Slide 57: Deletions in Bloom Filters
	Slide 58: Deletions in Bloom Filters
	Slide 59: Counting Bloom Filters
	Slide 60: Counting Bloom Filters
	Slide 61: Skip Lists
	Slide 62: Skip Lists
	Slide 63: Skip Lists
	Slide 64: Skip Lists
	Slide 65: Skip Lists
	Slide 66: Skip Lists
	Slide 67: Skip Lists
	Slide 68: Skip Lists
	Slide 69: Skip Lists
	Slide 70: Skip Lists
	Slide 71: Skip Lists
	Slide 72: Skip Lists
	Slide 73: Skip Lists
	Slide 74: Skip Lists
	Slide 75: Skip Lists
	Slide 76: Skip Lists
	Slide 77: Skip Lists
	Slide 78: Skip Lists
	Slide 79: Skip Lists
	Slide 80: Skip Lists
	Slide 81: Search in Skip Lists
	Slide 82: Deletion in Skip Lists

