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What is meant by Query Processing

* Any activity that is related to extracting data from the database.



What is meant by Query Processing

* Any activity that is related to extracting data from the database.

* We can sub-divide query processing into three tasks:
* Parsing and translation.
* Optimization.
 Evaluation.
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Parser

* Parsing helps to translate the query into a usable form.

* SQL is suitable for human to write queries, but not suited for system’s internal
representation of a query.

* Relational algebra is a more suited representation.

* So, the first step for the system, on receiving a query is to translate it into an
understandable format.
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Parser

* Does this remind you of some other component that you have used/heard?

* Compilers!
* A compiler also includes a parser to parse your programs.

* To generate an understandable format, query parser needs to:
* Check the syntax of the user’s query.

* Verify that the relation names appearing in the query are names of the relations
in the database, and

* Many more tasks...

* Post this, the system constructs a parse-tree representation of the query.



Parser

* We are not covering parsing as it is part of standard compilers course!
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What are the challenges with Parsing a Query

Say, we have the following query:
select salary from instructor where salary < 75000;
What is the relational algebra translation for this query?

* Oalary<7500 (Tsatary (INStructor)); Can there be another translation?

* Tcsalary (asalary<7500 (iIlStI'UCtOI'));
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Query Evaluation

* You have the parsed query in a relational algebra format, so what next?

* You need to evaluate the query (compute the result of the query).
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What are the challenges with Evaluating a Query

Say, we selected the following relational algebra translation for the earlir query.
* Oalary<7500 (Tsalary (INStructor));

How will you execute this query?

1) Search every tuple in instructor to find tuples with salary less than 75000.

2) Say you have a B*-tree index on salary, we can use that index to locate the tuples.
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* Annotate it with instructions stating how to evaluate each operation.
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Evaluation Plan

* Query translation should specify two things:
* The corresponding relational-algebra expression
* Annotate it with instructions stating how to evaluate each operation.

* Annotations can state the algorithm to be used, or one or more indices to use.

* Evaluation Primitive:
* Arelational algebra operation annotated with instructions on how to evaluate it.

* Query-Execution plan:
* A sequence of primitive operations that help to evaluate a query.



A simple query Evaluation Plan

nsalary

asalary<7500 ; Use index 1

instructor;

- Here, index 1 could be an index on salary; internally numbered as 1.



Cost Optimization

* Different evaluation plans for a given query can have different costs.



Cost Optimization

* Different evaluation plans for a given query can have different costs.

* You cannot expect users to write queries in a way that it results in the most efficient
evaluation plan.

* Responsibility of the DBMS to construct a query evaluation plan that minimizes the
cost of query evaluation.

* This task is called as query optimization.



How to Measure cost of a Query?

* Recall that the cost to access data from disk is the most expensive as disk accesses
are slow compared to in-memory operations.

* Cost of Query Evaluation plan =
e Number of block transfers from disk + Number of disk seeks.

* Say;
* D = Time to transfer a block from disk.
* A = Block access time (Seek time + Rotational Latency)
* To transter b blocks and perform s disk seeks would take = b*D + s*A
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How to Measure cost of a Query?

» Several other factors also contribute to query cost:
» Writes are twice expensive as reads. Why?

Because disk systems read sectors back after they are written to verify that the
write was successful.

* You may have to even estimate the cost of writing the final result of an
operation back to the disk.
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Scans and Searching

* We will now spend time on estimating the cost of search and scans.

* What are the important factors to consider when estimating the cost of a search or
scan?

* Is the search on a primary key?

* Is the search equal to primary key?

* Do you have access to indexes on primary key?
* Do you have access to secondary indexes?



File Scans: Linear Search

* Let’s assume we have a query like the following:

select * from instructors;
* This is going to scan over all the records in the table.

* A query similar to scan is where you have to search a key and you do not have any
index = You are forced to perform linear search.

* So, what do you think is the cost of this query?



File Scans: Linear Search

e Given,
* D = Time to transfer a block from disk.
* A - Block access time (Seek time + Rotational Latency)
* Say, you have to transfer b blocks.

* What is the cost of linear search or scan?



File Scans: Linear Search

e Given,
* D = Time to transfer a block from disk.
* A - Block access time (Seek time + Rotational Latency)
* Say, you have to transfer b blocks.

* What is the cost of linear search or scan?
*cA+b*D
* One initial seek (A) to reach the correct block/sector.
* Then, transferring b blocks.
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select * from instructors where id = 10;
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* And, suppose we have a B*-tree index built over the attribute “id”.
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Equality Search on Primary Key

* Let’s assume the height of the tree total levels from root to leaf) = h.

e Given,
* D - Time to transfer a block from disk.
* A - Block access time (Seek time + Rotational Latency)

* What is the cost of Equality Search on Primary Key?
* (h+1) * (A +D)
* Why this?



Equality Search on Primary Key

* These are worst-case cost estimates and the assumption is that the B*-tree is large
and cannot be stored in-memory.

* So, every node in the B*-tree has to be fetched from the disk.



Equality Search on Primary Key

* These are worst-case cost estimates and the assumption is that the B*-tree is large
and cannot be stored in-memory.

* So, every node in the B*-tree has to be fetched from the disk.

* All the keys in a B*-tree are at the leaf nodes. So,
* First, you need to traverse all the way to leaf node.

* During this traversal, you will access B*-tree nodes to determine which path to
take.

* Fetching each of these nodes is a disk access and requires seek time.

* And, then once you reach the desired node, you need to also fetch the actual
record.



Equality Search on Primary Key

h-

» Internal nodes

» Leaf nodes

> 3 Jotfrey 18 | 600
> 5 Voldemort 70 | 400
» 6 Scarecrow 30 | 150
> 8 Anakin 20 | 200
> 12 Kang 20 | 500
» 13 Gru 45 | 100
» 20 Thanos 100 | 400
» 25 Joker 66 | 200

File



Equality Search on Non-Key

* Let’s assume we have a query like the following:

select * from instructors where age = 45;

* The difference between this query and the previous query is that this query wants
us to search a specific record on a non-key.

* Here, the attribute “age” is not the primary key.

* So, what is the challenge with estimating the cost of this query?



Equality Search on Non-Key

* B*-tree index is built over the primary key attribute.
* For non-key attributes, we do not have an available index.

* So, we need to fetch multiple records and blocks as the index is not much useful.



Equality Search on Non-Key

* Let’s assume the height of the tree total levels from root to leaf) = h.

e Given,
e D =2 Time to transfer a block from disk.

* A = Block access time (Seek time + Rotational Latency)
* b > Number of blocks to fetch
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Equality Search on Non-Key

e Given,
e D = Time to transfer a block from disk.

* A - Block access time (Seek time + Rotational Latency)
* b 2> Number of blocks to fetch

* What is the cost of Equality Search on Non-Key?
*A+n*D



Equality Search on Non-Key

* A+n* D, Why?
* Because, we lack an index and the best way is to simply do a linear scan over all.

* Assumption = Data is stored sequentially.



Equality Search on Secondary Key

* Let’s assume we have a query like the following:

select * from instructors where age = 45;
* But, now assume we have a second index on the attribute “age”.
* Further, assume that our secondary index is also a B*-tree.

* So, what is cost of this query?



Equality Search on Secondary Key

* Let’s assume the height of the tree total levels from root to leaf) = h.

e Given,
* D - Time to transfer a block from disk.
* A - Block access time (Seek time + Rotational Latency)

* What is the cost of Equality Search on Secondary Key?
* (h+1) * (A + D)
* Why is this same as Equality Search on Primary Key?



Equality Search on Secondary Key

* The cost is same as equality on primary key because we have a B*-tree and we are
doing an exact match!

* No extra blocks accessed.



Equality Search on Secondary Non-Key

* Let’s assume we have a query like the following:

select * from instructors where salary = 10000;

* But, now assume that we have a
* Primary index on “Id”.
* Secondary index on “age”.
* But, no index for “salary”.

* So, what is cost of this query?



Equality Search on Secondary Non-Key

* Let’s assume the height of the tree total levels from root to leaf) = h.

e Given,
D - Time to transfer a block from disk.
* A - Block access time (Seek time + Rotational Latency)
 n 2 Number of records to fetch

* What is the cost of Equality Search on Non-Key?
*A+n*D



Comparative Search on Primary Key

* Let’s assume we have the following queries:
select * from instructors where id < 10;

select * from instructors where id <= 10;

* For these queries, we need to decide whether we want to use a B*-tree index or
linear scan.

* Why do we need to decide?



Comparative Search on Primary Key

* Let’s assume we have the following queries:
select * from instructors where id < 10;

select * from instructors where id <= 10;

* For these queries, we need to decide whether we want to use a B*-tree index or
linear scan.

* Why do we need to decide?

* Because linear scan will often result in cheaper estimate as we have to get all the
values less or less than equal to the primary key.
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Comparative Search on Primary Key

* Let’s assume we have the following queries:
select * from instructors where id > 10;
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* For these queries, we will make use of a B+-tree index , followed by a file scan.
* Why?



Comparative Search on Primary Key

* Let’s assume we have the following queries:
select * from instructors where id > 10;

select * from instructors where id >= 10;

* For these queries, we will make use of a B+-tree index, followed by a file scan.
* Why?

* Because the last record to access is the end of the file.

* What is the cost?



Comparative Search on Primary Key

* Let’s assume the height of the tree total levels from root to leaf) = h.

e Given,
e D =2 Time to transfer a block from disk.

* A = Block access time (Seek time + Rotational Latency)
* b > Number of blocks to fetch

* What is the cost of Equality Search on Non-Key?
* (h+1) * (A+D)+b * D
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